NASA’s Laser Communications Relay Demonstration Deploys

Rendering of LCRD Spacecraft
The Laser Communications Relay Demonstration payload is attached to the LCRD Support Assembly Flight (LSAF), which can be seen in this image. The LSAF serves as the backbone for the LCRD components. Attached to the LSAF are the two optical modules, which generate the infrared lasers that transmit data to and from Earth. A star tracker is also attached here. These components are visible on the left side of this image. Other LCRD components, such as the modems that encode data into laser signals, are attached to the back of the LSAF.
Photo credits: NASA’s Goddard Space Flight Center

NASA’s payloads aboard STP-3, the Laser Communications Relay Demonstration (LCRD) and UVSC Pathfinder, have successfully deployed. The Centaur second stage released the U.S. Department of Defense’s Space Test Program Satellite-6 (STPSat-6) spacecraft, which hosts the payloads, into geosynchronous orbit. After coasting for another 40 minutes, Centaur will release the Space Force’s additional satellite, completing the longest Atlas mission in its more than 60-year history.

LCRD will use laser communications systems to transmit data from space to Earth and help NASA update how astronauts communicate to and from space. LCRD is led by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Partners include NASA’s Jet Propulsion Laboratory in Southern California and the MIT Lincoln Laboratory. LCRD is funded through NASA’s Technology Demonstration Missions program, part of the Space Technology Mission Directorate, and the Space Communications and Navigation (SCaN) program at NASA Headquarters.

UVSC Pathfinder — short for Ultraviolet Spectro-Coronagraph Pathfinder — will peer at the lowest regions of the Sun’s outer atmosphere, or corona. The mission is a joint NASA-U.S. Naval Research Laboratory experiment that studies the origins of solar energetic particles, the Sun’s most dangerous form of radiation.

To stay updated about LCRD and laser communications, visit: