Under Pressure! New Rainbird System Will Protect Artemis II

Water spraying out of a nozzle for rainbird testing for the Artemis II mission.
Water flows through a small-scale, 3D-printed nozzle during prototype testing of a new rainbird system on March 24, 2021, at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Ben Smegelsky

As NASA prepares for the uncrewed Artemis I test flight, teams at the agency’s Kennedy Space Center are also hard at work getting ready for the Artemis II mission that will send astronauts on a trip around the Moon ahead of a crewed lunar landing.

Water flows through large nozzles during rainbird testing for the Artemis II mission.
Teams with NASA’s Exploration Ground Systems and supporting contractors conduct prototype testing of a new rainbird system at the agency’s Kennedy Space Center in Florida on March 24, 2021, that can be used for the crewed Artemis II mission to the Moon. Photo credit: NASA/Ben Smegelsky

This includes assessing a new prototype “rainbird” system designed to protect the mobile launcher – as well as NASA’s Space Launch System (SLS) – when the engines roar to life. The March 24 tests included running various water pressures through small-scale, 3D-printed nozzles to capture data that can be used to develop full-scale hardware.

The rainbirds will release enough water to fill 40 swimming pools in 40 seconds. This massive volume will help absorb the heat and energy when SLS, the most powerful rocket the agency has ever built, lifts off with the Orion spacecraft from Kennedy’s Launch Pad 39B.

While upgraded rainbirds – large-scale water nozzles – have already been tested and installed on the mobile launcher for the Artemis I launch, Exploration Ground Systems (EGS) found room for improvement. This led teams from EGS and supporting contractors to start testing another prototype system to distribute water more evenly to maximize performance ahead of the Artemis II launch.

Water flows through a nozzle during rainbird testing for the Artemis II mission.
Alongside the iconic Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, teams with the agency’s Exploration Ground Systems and supporting contractors conduct prototype testing of a new rainbird system on March 24, 2021. Photo credit: NASA/Ben Smegelsky

“By running our prototype through a range of pressures, we can simulate what each of the rainbirds will see on the mobile launcher on launch day and have a better understanding of how they will perform when we scale them back up to full size,” said Dave Valletta, a design engineer at Kennedy working on the ignition overpressure protection and sound suppression (IOPSS) system.

A critical piece of the IOPSS system, the rainbird got its name decades ago when space shuttle developers noted that it looked like a garden sprayer.

“When we saw the pattern of the water discharge during the first test flow in the shuttle program, it reminded us of your common lawn sprinkler, only it did not rotate and was 100 times the size,” said Jerry Smith, a design engineer for mechanical-fluid systems at Kennedy.

Once prototype testing is complete, allowing better prediction of future spray patterns, the team will move forward with designing a preferred concept. That concept will be built and installed on the mobile launcher to undergo verification and validation testing, where the newly installed nozzles will be fully integrated with the launch pad to ensure they work as expected.

“The confidence check gained from these tests will lead us to developing full-scale nozzles for the mobile launcher,” said Gerald Patterson, IOPSS and fire suppression system operations engineer and test lead. “Once installed, they’ll provide more efficient water distribution across the deck and, ultimately, better protection to ground systems, the SLS rocket, and its crew for Artemis II and beyond.”

NASA Announces Lunar Delivery Challenge Winners

An illustration of astronauts on the Moon.
An illustration of astronauts on the Moon. Photo credit: NASA

With the Artemis program, NASA will send the first woman and next man to the surface of the Moon, construct a lunar orbiting outpost, and establish a sustainable presence. This will require deliveries of supplies and equipment to the lunar surface, but how to unload the cargo once it arrives is an open question. NASA created the Lunar Delivery Challenge to seek ideas from the public for practical and cost-effective solutions to unload payloads onto the surface of the Moon.

The challenge received 224 entries before the submission period closed Jan. 19, 2021. The ideas came from various types of space enthusiasts who share a passion for human space exploration, and participants varied from student teams, to individuals from the private sector, to parent-child duos.

NASA awarded $25,000 in total prizes to six teams, including one first place winner with a prize of $10,000; two second place winners with prizes of $4,500 each; and three third place winners with prizes of $2,000 each:

  • First Place – Lightweight Inflatable Delivery System (LIDS) by Lauren Fell
  • Second Place – OO.A – mOOngoAt by Team FRD
  • Second Place – Scalable Payload Delivery System (SPaDeS) by Team SPaDeS
  • Third Place – Transporter and Gantry (L-TAG) by Team AA-Star
  • Third Place – Modular Lunar Cargo Handling System by Team Sparkletron
  • Third Place – Truss Manipulator by Wendell Chun

For a link to the full story, and to read about each of the winning concepts, click here.

 

Mammoth Artemis I Rocket Boosters Stacked on Mobile Launcher

The Space Launch System boosters are stacked on the mobile launcher inside the Vehicle Assembly Building.
The Space Launch System twin solid rocket boosters are fully assembled and stacked on the mobile launcher inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on March 3, 2021. Photo credit: NASA/Isaac Watson

Leerlo en español aquí.

Stacking is complete for the twin Space Launch System (SLS) solid rocket boosters for NASA’s Artemis I mission. Over several weeks, workers used one of five massive cranes to place 10 booster segments and nose assemblies on the mobile launcher inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Engineers with Exploration Ground Systems placed the first segment on Nov. 21, 2020, and continued the process until the final nose assembly was placed on March 2.

Prior to the arrival of the core stage, the team will finish installing electrical instrumentation and pyrotechnics, then test the systems on the boosters. When the SLS core stage arrives at Kennedy, technicians will transport it to the VAB and then stack it on the mobile launcher between the two boosters.

The SLS will be the most powerful rocket in the world, producing up to 8.8 million pounds of thrust during its Artemis I launch.

“Seeing the Space Launch System solid rocket boosters stacked completely on the Mobile Launcher for the first time makes me proud of the entire team especially  the Exploration Ground Systems crew at Kennedy who are assembling them and also the teams at Marshall and Northrop Grumman who designed, tested and built them,” said Bruce Tiller, the SLS boosters manager at NASA’s Marshall Space Flight Center. “This team has created the tallest, most powerful boosters ever built for flight, boosters that will help launch the Artemis I mission to the Moon.”

Artemis I will be an uncrewed test of the Orion spacecraft and SLS rocket as an integrated system ahead of crewed flights to the Moon. Under the Artemis program, NASA aims to land the first woman and the next man on the Moon in 2024 and establish sustainable lunar exploration by the end of the decade.

NASA and Boeing Evaluating Launch Date for Orbital Flight Test-2

Technicians observe Boeing’s Starliner crew module being placed on top of the service module in the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on Jan. 14, 2021. The Starliner spacecraft is being prepared for Boeing’s second Orbital Flight Test (OFT-2). As part of the agency’s Commercial Crew Program, OFT-2 is a critical developmental milestone on the company’s path to fly crew missions for NASA. Credit: Boeing/John Proferes

NASA and Boeing are evaluating a new target launch date for the CST-100 Starliner’s Orbital Flight Test-2 (OFT-2) to the International Space Station after winter storms in Houston, and the recent replacement of avionics boxes, set the program back about two weeks. NASA also is weighing the volume of verification and validation analysis required prior to the test flight and the visiting vehicle schedule at the International Space Station.

Previously, the launch was targeted for no earlier than April 2.

An important factor the teams are evaluating is the visiting vehicle schedule at the International Space Station, which already has a scheduled crewed Soyuz launch and NASA’s SpaceX Crew-2 mission in April. Based on the current traffic at the space station, NASA does not anticipate that OFT-2 can be accomplished later in April. NASA and Boeing are working to find the earliest possible launch date.

“Boeing and NASA have worked extremely hard to support an early-April launch but we need to assess alternatives to ensure NASA’s safety work can be accomplished. NASA and Boeing know we fly together,” said Kathy Lueders, associate administrator, NASA’s Human Exploration and Operations Mission Directorate. “Boeing has done an incredible amount of work on Starliner to be ready for flight and we’ll provide an update soon on when we expect to launch the OFT-2 mission.”

“I’m grateful for the extraordinary work being undertaken by our NASA partners as we progress towards our OFT-2 mission,” said John Vollmer, vice president and program manager of Boeing’s Commercial Crew Program. “And I’m very proud of the Boeing Starliner team for working so diligently to get the hardware, software and certification closure products ready for flight. We’re committed to demonstrating the safety and quality of our spacecraft and progressing to our crewed test flight and the missions beyond.”

The company has been conducting dry-runs ahead of an end-to-end mission rehearsal that will allow the operations team to practice and observe integrated interactions through the whole mission profile, from launch to docking and undocking to landing. Additionally, power-on testing and checkouts of the OFT-2 vehicle, with new avionics boxes installed, have been completed successfully. Spacecraft fueling operations and the stacking of the launch vehicle are also ready to commence.

Artemis I Boosters Reach New Heights

Space Launch System boosters for the Artemis I mission are stacked in the Vehicle Assembly Building.
In High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the left-hand and right-hand forward segments are secured on top of the center forward segments on the mobile launcher (ML) for the Space Launch System (SLS) on Feb. 24, 2021. Photo credit: NASA/Glenn Benson

NASA’s Space Launch System (SLS) solid rocket boosters have grown taller with the addition of the fifth and final pair of motor segments in preparation for the launch of Artemis I later this year. At NASA’s Kennedy Space Center in Florida, engineers with Exploration Ground Systems lowered the final solid rocket booster into place on the mobile launcher on Feb. 23. Up next, the nose assemblies will be placed atop the segments to complete the boosters. The twin boosters will power the first flight of the agency’s new deep space rocket during the launch of Artemis I. This mission is an uncrewed flight to test the SLS rocket and Orion spacecraft as an integrated system, preparing the way for Artemis II and other crewed flights to the Moon.

NASA’s Commercial Crew Program Manager Named Federal Engineer of the Year

Steve Stich is the manager of NASA's Commercial Crew Program.
Steve Stich, now manager of NASA’s Commercial Crew Program, monitors the countdown during a dress rehearsal in preparation for the launch of a SpaceX Falcon 9 rocket carrying the company’s Crew Dragon spacecraft on NASA’s SpaceX Demo-2 mission with NASA astronauts Robert Behnken and Douglas Hurley onboard, Saturday, May 23, 2020, in firing room four of the Launch Control Center at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Joel Kowsky

The National Society of Professional Engineers (NSPE) has named Steve Stich, manager of NASA’s Commercial Crew Program (CCP), as the agency’s Federal Engineer of the Year. Sponsored by Professional Engineers in Government, the award honors engineers of federal agencies that employ at least 50 engineers worldwide.

Stich was recognized during a virtual award ceremony on Wednesday, Feb. 24, alongside recipients from the National Park Service, the Food and Drug Administration, the U.S. Air Force, and others.

“This is such an honor and one granted based on the tremendous team with which I am privileged to work,” Stich said. “I’m so proud of everything that we’ve accomplished together, and I’m really looking forward to what lies ahead this year for CCP and NASA as a whole.”

Stich oversees the development of commercial spacecraft and the certification required to safely send astronauts to the International Space Station. As the CCP manager, Stich played a role in returning human spaceflight capability to the United States following the retirement of the Space Shuttle Program in 2011.

He led the agency’s SpaceX Demo-2 mission that carried NASA astronauts Robert Behnken and Douglas Hurley to the space station and returned them safely to Earth, validating SpaceX’s transportation system for recurring, operational missions to the orbiting laboratory. Leading up to the mission, Stich provided final approval on vehicle design changes and system and vehicle component certifications. He also oversaw additional testing as required to reduce technical risk.

In the citation released from NASA Johnson Space Center’s Award Office, Stich is recognized for his “exceptional leadership, vehicle design expertise, and risk-mitigation, paving the way for NASA to enable commercial low-Earth orbit (LEO) space transportation and for expanding access to space for users across the government, commercial customers, and academia.”

He first started his career at NASA in 1987 and, since then, has led teams within multiple organizations and programs, including Johnson’s Engineering, NASA’s White Sands Test Facility, the shuttle program, and Johnson’s Advanced Exploration Systems. His more than 33 years of expertise at NASA has allowed the agency to continue conducting technology and research investigations aboard the orbiting laboratory and also helped lay the framework for future deep space exploration missions under the Artemis program.

For a full list of award recipients, as well as the top 10 finalists for the NSPE 2021 Federal Engineer of the Year, visit https://www.nspe.org/resources/interest-groups/government/federal-engineer-the-year.

Kennedy Announces Winner for 2020 Best of KSC Software Competition

Members of the development team that redesigned the SpecsIntact software at Kennedy Space Center.
The development team that redesigned the SpecsIntact software at NASA’s Kennedy Space Center in Florida is made up of NASA and contractor employees from across the center. In the front row, from left is Candy Thomas, Tammy Edelman, and Martha Muller. Middle row, from left is Carly Helton, Marcelo Dasilva, Eric Lockshine, Cheryl Fitz-Simon, and Maria Zamora. Back row, from left is Jim Whitehead, Pierre Gravelat, Stephan Whytsell. Members of the team not pictured are Dan Evans, Belle Graziano, Eric Hall, Lelia Hancock, Justin Junod, John Merrick, Jim Morrison, Julie Nicely, Phil Nicholson, Gerard Sczepura, Daniel Smith, and Jeanne Yow. Photo credit: NASA

NASA’s Kennedy Space Center, a premier multi-user spaceport, uses research and innovation to support the future of space exploration. Kennedy’s annual Best of KSC Software competition is an employee-driven contest that fosters creativity and enables new discoveries to improve the quality of life on Earth and the exploration of our solar system and beyond.

Close-up view of the flame trench and flame deflector and Launch Pad 39B.
A close-up view of the flame trench and flame deflector at Launch Pad 39B at NASA’s Kennedy Space Center in Florida on July 26, 2018. The launch pad has undergone upgrades and modifications to accommodate NASA’s Space Launch System and Orion spacecraft for Artemis I and other deep space missions. New heat-resistant bricks have been installed on the walls and a new flame deflector is in place. Photo Credit: NASA/Cory Huston

The 2020 winner of Best of KSC Software was SpecsIntact 5. The development team, made up of NASA employees and contractors from across the center, earned this distinction by redesigning the SpecsIntact software. This automated specification management system is used in construction projects worldwide. The upgraded system reduces the time and cost required to produce facility specifications with an easy and intuitive interface that assists with quality control.

The team at Kennedy Space Center manages the SpecsIntact system, which also is used by many federal and state agencies, including the U.S. military. At Kennedy, NASA used previous versions of the software for the design, construction, and upgrades of several facilities, including modification of the spaceport’s headquarters building and upgrades to the main flame deflector in the flame trench at Launch Pad 39B.

A view looking up at the 10 levels of work platforms in High Bay 3 inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The work platforms will surround and provide access for service and processing of NASA’s Space Launch System rocket and Orion spacecraft. Photo credit: NASA/Glenn Benson

The software was also instrumental to the renovation of High Bay 3 inside the Vehicle Assembly Building in preparation for NASA’s first integrated launch of the Space Launch System rocket and Orion spacecraft as part of the agency’s Artemis program.

The SpecsIntact system has evolved significantly since first conceived at NASA in 1965 to support applications across both the government and private sector. NASA’s Technology Transfer Program ensures that innovations developed for exploration and discovery are broadly available to the public, maximizing the benefit to the nation. The program enables U.S. industry efforts to find new applications for NASA technologies on Earth and for human space exploration, including deep space missions to the Moon and Mars.

Artemis I Boosters Take Shape

The Space Launch System solid rocket boosters are being stacked on the mobile launcher inside the Vehicle Assembly Building.
The twin solid rocket boosters for NASA’s Space Launch System (SLS) are being stacked on the mobile launcher inside the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida. The boosters will power SLS on the Artemis I mission. Photo credit: NASA/Kim Shiflett

Booster stacking continues! The second to last set of segments for NASA’s Space Launch System (SLS) solid rocket boosters were placed on the mobile launcher inside the Vehicle Assembly Building at NASA’s Kennedy Space Center. Engineers with Exploration Ground Systems and Jacobs transported the segments from the Rotation, Processing and Surge Facility, where they have been since June. Once fully stacked, each booster will stand nearly 17 stories tall. The twin boosters will power the first flight of the agency’s new deep space rocket during the Artemis I mission. This uncrewed flight later this year will test the SLS rocket and Orion spacecraft as an integrated system ahead of crewed flights.

Kennedy Harvests Radish Crop as Part of PH-02 Experiment

Radishes are harvested from the Advanced Plant Habitat ground unit at Kennedy Space Center.
A research scientist harvests radishes grown in the Advanced Plant Habitat ground unit at NASA’s Kennedy Space Center in Florida on Dec. 14, 2020. Part of the Plant Habitat-02 (PH-02) experiment, scientists will compare these radishes grown at Kennedy to radish crops growing on the International Space Station. This crop of radishes was grown under similar conditions as those growing in space – the major difference being the absence of microgravity. The comparison will allow researchers to better see how a microgravity environment affects plant growth ahead of long-duration missions to the Moon and Mars. Photo credit: NASA/Kim Shiflett

A team of researchers and engineers harvested radishes from the Advanced Plant Habitat (APH) ground unit as part of the Plant Habitat-02 experiment, or PH-02, at NASA’s Kennedy Space Center in Florida on Dec. 14, 2020. This crop was a ground control for a similar crop of radishes grown aboard the International Space Station, which Astronaut Kate Rubins harvested on Nov. 30, 2020. Knowledge gained from the PH-02 experiment will enable astronauts to grow crops that will help sustain crews on long-duration space exploration missions beyond low Earth orbit.

Scientists will compare the results of the ground control experiment to the plants grown in space. The nearly identical growing conditions for both crops will make it possible to identify the effects of the space environment by measuring a range of properties including chlorophyll quantities, enzyme activity, mineral uptake, and several other traits. The major difference is the crops grown on the space station experienced microgravity, an environment vastly different from Earth’s. In microgravity, everything from fluids to flames behave differently.

The space station is a unique laboratory enabling long-duration microgravity experiments that lead to a better understanding of fundamental properties of everything from plants to physics. In space, a second crop of radishes is already growing in the APH on station for the second part of PH-02. Astronauts plan to harvest that crop on Dec. 30, 2020, and send samples back to Earth in 2021 on a SpaceX Commercial Resupply Services mission return flight.

The APH is NASA’s largest and most sophisticated growth chamber designed for plant and bioscience research aboard the space station. It has control systems and more than 180 sensors to deliver precise amounts of water while regulating and monitoring moisture levels, temperature, carbon dioxide concentration, and oxygen content. The APH provides high-intensity red, blue, green, broad spectrum white, and far-red LED light to plants in the chamber. APH’s highly automated data and photo interfaces allow researchers on the ground to access photos and real-time data telemetry while also sending remote commands to the chamber.

To stay updated on this and other Biological and Physical Sciences research, please visit https://science.nasa.gov/biological-physical.

SpaceX’s CRS-21 Underway; Upgraded Cargo Dragon En Route to Space Station

Liftoff of SpaceX's CRS-21 mission to the International Space Station.
A SpaceX Falcon 9 rocket lifts off from Launch Complex 39A at Kennedy Space Center in Florida at 11:17 a.m. EST on Dec. 6, 2020, carrying the uncrewed cargo Dragon spacecraft on its journey to the International Space Station for NASA and SpaceX’s 21st Commercial Resupply Services (CRS-21) mission. Dragon will deliver more than 6,400 pounds of science investigations and cargo to the orbiting laboratory. The mission marks the first launch for SpaceX under NASA’s CRS-2 contract. Photo credit: NASA/Kim Shiflett

SpaceX’s upgraded cargo Dragon spacecraft is on its way to the International Space Station after launching atop a Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Liftoff occurred at 11:17 a.m. EST.

The first launch for SpaceX under NASA’s second Commercial Resupply Services contract, CRS-21 will deliver supplies, equipment, and materials to directly support dozens of the more than 250 science and research investigations that will occur aboard the orbiting laboratory during Expeditions 64 and 65.

The Nanoracks Bishop Airlock is the first comercially funded airlock bound for the International Space Station on SpaceX's CRS-21 mission.
The Nanoracks Bishop Airlock is packed in the Dragon spacecraft’s trunk on Oct. 12, 2020, inside SpaceX’s processing facility at NASA’s Kennedy Space Center in Florida for its ride to the International Space Station aboard the company’s 21st Commercial Resupply Services (CRS-21) mission. Photo credit: SpaceX

Included in this delivery is the Nanoracks Bishop Airlock, the first commercially owned and operated airlock that, once installed, will provide a variety of capabilities to the space station, such as payload hosting, robotics testing, and satellite deployment. It also will serve as an outside toolbox for crew members conducting spacewalks.

Dragon is scheduled to arrive at the space station tomorrow, Dec. 7. At approximately 1:30 p.m. EST, the spacecraft will autonomously dock to the station’s Harmony module – the first automated docking for a SpaceX cargo resupply mission. Live coverage will begin at 11:30 a.m. EST on NASA TV and the agency’s website. NASA astronauts and Expedition 64 Flight Engineers Kate Rubins and Victor Glover will monitor docking operations.

Cargo Dragon’s arrival at the space station will mark the first time two Dragon spacecraft will be docked to the orbiting laboratory at the same time. The Crew Dragon spacecraft, named Resilience, that brought the Crew-1 astronauts has been docked since its arrival on Nov. 16.

The cargo Dragon spacecraft will remain attached to the space station for about one month, after which it will return to Earth with 5,200 pounds of research and return cargo, splashing down in the Atlantic Ocean.

To stay updated on all station activities, follow @space_station and @ISS_Research on Twitter, as well as the ISS Facebook and ISS Instagram accounts. Or, follow along the station blog at: https://blogs.nasa.gov/spacestation/