NASA’s SpaceX Demo-2 ‘Go’ for Liftoff Wednesday After Today’s Launch Readiness Review

Demo-2 media teleconference
Representatives from NASA, SpaceX and the U.S. Air Force 45th Weather Squadron participate in a media teleconference following the Launch Readiness Review at the agency’s Kennedy Space Center in Florida on Monday, May 25, 2020, in advance of NASA’s SpaceX Demo-2 flight test to the International Space Station as part of NASA’s Commercial Crew Program. From left to right are: Norm Knight, deputy director, NASA Johnson Space Center Flight Operations; Kathy Lueders, manager, NASA Commercial Crew Program; Kirk Shireman, manager, International Space Station Program; Hans Koenigsmann, vice president, Build and Flight Reliability, SpaceX; and Mike McAleenan, launch weather officer, 45th Weather Squadron. Photo credit: NASA/Cory Huston

NASA’s SpaceX Demo-2 mission passed its final major review today at the agency’s Kennedy Space Center in Florida, and teams received the “go” to proceed toward launch. Liftoff of the SpaceX Falcon 9 rocket and Crew Dragon spacecraft, carrying NASA astronauts Robert Behnken and Douglas Hurley, is scheduled for Wednesday, May 27, at 4:33 p.m. EDT from Kennedy’s Launch Complex 39A.

The mission will return human spaceflight to the International Space Station from U.S. soil on an American rocket and spacecraft as a part of NASA’s Commercial Crew Program. Demo-2 will be SpaceX’s final test flight to validate its crew transportation system, including the Crew Dragon, Falcon 9, launch pad and operations capabilities.

“We’re burning down the final paper. All the teams are a go, and we’re continuing to progress toward our mission,” said Kathy Lueders, manager, NASA Commercial Crew Program. “I’m very proud of the team. We are continuing to be vigilant and careful, and make sure we do this right.”

In this morning’s official forecast, the U.S. Air Force 45th Weather Squadron predicted a 60% chance of unfavorable weather conditions for the Demo-2 mission. The primary weather concerns that could prevent launch are flight through precipitation, thick and cumulus clouds.

However, 45th Weather Squadron Launch Weather Officer Mike McAleenan pointed out things are looking up.

“It certainly has been trending better over the last day or two for launch weather,” McAleenan said. “If I was to issue the forecast today, right now, we would probably be down to 40% chance of violation.”

Crew members Behnken and Hurley remain in quarantine, a routine part of prelaunch preparations for astronauts journeying into space. On Saturday, they took part in a full dress rehearsal of launch day, including suiting up and climbing aboard the Crew Dragon at Launch Complex 39A.

“It was a really good review today, and from a crew perspective, we were very happy with the discussions that took place — the thoroughness of the review,” said Norm Knight, deputy director, Flight Operations, NASA Johnson Space Center. “We’re definitely ready to press forward.”

Upon arriving at the space station, Behnken and Hurley will join the Expedition 63 crew to conduct important research as well as support station operations and maintenance. While docked to the station, the crew will run tests to ensure the Crew Dragon spacecraft is capable on future missions of remaining connected to the station for up to 210 days.

“I think the on-orbit crew is definitely ready for some company, and very much looking forward to the launch this Wednesday,” said Kirk Shireman, manager, NASA International Space Station Program. “The ISS team is ready to support the docking of Crew Dragon.”

The specific duration for this mission will be determined after arrival based on the readiness of the next commercial crew launch. Finally, the mission will conclude with the Crew Dragon undocking from the station, deorbiting and returning Behnken and Hurley to Earth with a safe splashdown in the Atlantic Ocean.

NASA’s SpaceX Demo-2 Launch Readiness Review Complete; Media Teleconference at 6 p.m. EDT

The Launch Readiness Review for NASA’s SpaceX Demo-2 mission has concluded at the agency’s Kennedy Space Center in Florida. NASA and SpaceX key managers have given the “go” for launch on a mission that will return human spaceflight to the International Space Station from U.S. soil on an American rocket and spacecraft as a part of NASA’s Commercial Crew Program.

Liftoff of the SpaceX Falcon 9 rocket and Crew Dragon spacecraft, carrying NASA astronauts Robert Behnken and Douglas Hurley, is scheduled for Wednesday, May 27, at 4:33 p.m. EDT from Kennedy’s Launch Complex 39A.

A media teleconference is scheduled for 6 p.m. EDT. Live audio of the Demo-2 mission patchteleconference will be streamed at http://www.nasa.gov/live.

Participants are:

  • Kathy Lueders, manager, NASA Commercial Crew Program
  • Kirk Shireman, manager, NASA International Space Station Program
  • Hans Koenigsmann, vice president, Build and Flight Reliability, SpaceX
  • Norm Knight, deputy director, Flight Operations, NASA Johnson Space Center
  • Mike McAleenan, launch weather officer, 45th Weather Squadron

Demo-2 will be SpaceX’s final test flight to validate its crew transportation system, including the Crew Dragon, Falcon 9, launch pad and operations capabilities. During the mission, the crew and SpaceX mission controllers will verify the performance of the spacecraft’s environmental control system, displays and control system, maneuvering thrusters, autonomous docking capability, and more.

Behnken and Hurley will join the Expedition 63 crew on the station to conduct important research as well as support station operations and maintenance. While docked to the station, the crew will run tests to ensure the Crew Dragon spacecraft is capable on future missions of remaining connected to the station for up to 210 days. The specific duration for this mission will be determined after arrival based on the readiness of the next commercial crew launch. Finally, the mission will conclude with the Crew Dragon undocking from the station, deorbiting and returning Behnken and Hurley to Earth with a safe splashdown in the Atlantic Ocean.

NASA’s Mars Perseverance Rover Gets a Boost

Mars Perseverance rover booster offload
The United Launch Alliance booster for NASA’s Mars Perseverance rover is offloaded from the Antonov 124 cargo aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida on May 19, 2020. Photo credit: NASA/Kim Shiflett

With the addition of a powerful piece of hardware, NASA’s Mars Perseverance rover continues to progress toward its much-anticipated launch in less than two months.

The spacecraft’s booster arrived at Cape Canaveral Air Force Station’s Skid Strip on Monday, May 18. It was then offloaded and taken to United Launch Alliance’s (ULA) Atlas Spaceflight Operations Center.

Mars Perseverance rover booster arrival
The Antonov 124 cargo aircraft, carrying the United Launch Alliance booster for NASA’s Mars Perseverance rover, taxis off the runway at the Skid Strip at Cape Canaveral Air Force Station on May 18, 2020. Photo credit: NASA/Kim Shiflett

Perseverance remains on track for its targeted mid-July launch. The rover will liftoff aboard a ULA Atlas V 541 rocket from Cape Canaveral Air Force Station. NASA’s Launch Services Program based at the agency’s Kennedy Space Center in Florida is managing the launch.

Perseverance will reach the Red Planet on Feb. 18, 2021. After the rover enters the thin Martian atmosphere, the descent stage — utilizing a tether of nylon cords — will lower Perseverance to the surface of Jezero Crater.

Developed under NASA’s Mars Exploration Program, the rover’s astrobiology mission will search for signs of past microbial life. Ingenuity, the twin-rotor, solar-powered helicopter attached to Perseverance, will become the first aircraft to fly on another world.

For more information, visit the mission website.

Perseverance Presses On, Remains Targeted for Summer Launch

Mars Perseverance rover in the PHSF at Kennedy Space Center
Multiple milestones have been reached recently with the Mars Perseverance rover at Kennedy Space Center in Florida. The aeroshell backshell was attached on April 29 and the rover was attached to its rocket-powered descent stage on April 23 inside the Payload Hazardous Servicing Facility. Photo credit: NASA/JPL

Testing on NASA’s Mars Perseverance rover at Kennedy Space Center closed out April on an extremely high note.

The latest activities at the Florida spaceport included attaching the aeroshell backshell on April 29 and attaching the rover to its rocket-powered descent stage on April 23 inside the Payload Hazardous Servicing Facility. The rover and descent stage were the first spacecraft components to come together for launch — and they will be the last to separate when the spacecraft reaches Mars on Feb. 18, 2021.

The backshell carries the parachute and several components that will be used during later stages of entry, descent and landing. The aeroshell will encapsulate and protect Perseverance and its descent stage during their deep space journey to Mars and during descent through the Martian atmosphere, which generates intense heat.

April saw other key rover milestones reached at Kennedy. On April 14, the

Mars Perseverance rover in the PHSF
Perseverance remains on track for its targeted launch period, which opens in six weeks. Liftoff, aboard a ULA Atlas V 541 rocket, will be from Cape Canaveral Air Force Station. Photo credit: NASA/JPL

descent stage — fully loaded with 884 pounds of fuel (a hydrazine monopropellant) — was rotated and spun on two separate measuring fixtures to pinpoint its center of gravity.  This will help ensure the descent stage remains stable while guiding Perseverance to a safe landing.

On April 6, NASA’s Mars Helicopter, recently named Ingenuity, was attached to the belly of the rover. Weighing less than four pounds, the twin-rotor, solar-powered helicopter will be released to perform the first in a series of flight tests that will take place during 30 Martian days (a day on Mars is about 40 minutes longer than a day on Earth). Ingenuity will become the first aircraft to fly on another world.

Thanks to the enduring efforts of NASA and United Launch Alliance (ULA) engineers, Perseverance remains on track for its targeted launch period, which opens in just six weeks. The rover will liftoff aboard a ULA Atlas V 541 rocket from Cape Canaveral Air Force Station. NASA’s Launch Services Program based at Kennedy is managing the launch.

After the rover enters the thin Martian atmosphere, the descent stage will complete the slowing of Perseverance to less than two miles per hour. At about 65 feet over the Martian surface, the descent stage — utilizing a tether of nylon cords — will lower Perseverance to the surface of Jezero Crater. The rover will then sever the cords and the descent stage will fly away.

About the size of a car with dimensions similar to the Curiosity rover, Perseverance will carry seven different scientific instruments. Developed under NASA’s Mars Exploration Program, the rover’s astrobiology mission will search for signs of past microbial life. It will characterize the planet’s climate and geology, collect samples for future return to Earth, and pave the way for human exploration of the Red Planet.

Visit the mission website for more information.

NASA Test Directors Eagerly Await Artemis Launch

Charlie Blackwell-Thompson, Jeremy Graeber and Jeff Spaulding in Kennedy Space Center's Launch Control Center
NASA Launch Director Charlie Blackwell-Thompson, above, confers with Senior NASA Test Director Jeff Spaulding, left, and Test, Launch and Recovery Operations Branch Chief Jeremy Graeber in Firing Room 1 at Kennedy Space Center’s Launch Control Center during a countdown simulation. Photo credit: NASA/Cory Huston

By Jim Cawley
NASA’s Kennedy Space Center

Before NASA’s mighty Space Launch System (SLS) rocket can blast off from the agency’s Kennedy Space Center to send the Orion spacecraft into lunar orbit, teams across the country conduct extensive testing on all parts of the system. Guiding that effort at the Florida spaceport are NASA test directors, or NTDs.

NTDs within the Exploration Ground Systems program are in charge of flight and ground hardware testing in Kennedy’s Launch Control Center firing rooms 1 and 2, where activities involved with preparing rockets, spacecraft and payloads for space can be controlled from computer terminals. They are responsible for emergency management actions, helping lead the launch team during all facets of testing, launch and recovery.

NASA’s Artemis missions will land American astronauts on the Moon by 2024, beginning with Artemis I, the uncrewed flight test of SLS and Orion.

“It’s certainly an amazing feeling to be responsible for setting up the building blocks of a new program which will eventually take us to the Moon, Mars and beyond,” said Senior NASA Test Director Danny Zeno.

Senior NASA Test Director Danny Zeno
Senior NASA Test Director Danny Zeno is leading the development of test plans and procedures that are essential to flight and ground hardware for the Artemis missions. Photo credit: NASA

Zeno is leading the development of test plans and procedures that are essential to flight and ground hardware for the Artemis missions. This includes proving the functionality of flight and ground systems for the assembled launch vehicle configuration, verifying the mobile launcher arms and umbilicals operate as expected at launch, and performing a simulated launch countdown with the integrated vehicle in the Vehicle Assembly Building.

The 14-year NTD veteran relishes his hands-on role in successfully testing and launching SLS — the most powerful rocket NASA has ever built.

“It’s very fulfilling,” Zeno said. “What excites me about the future is that the work I’m doing today is contributing to someday having humans living and working on other planets.”

There are 18 people in the NTD office — all of whom must undergo rigorous certification training in the management and leadership of test operations, systems engineering and emergency response. They are in charge of the people, hardware and schedule during active firing room testing.

“The NTD office is at the center of testing operations, which will ensure that we are ready to fly the Artemis missions,” said Launch Director Charlie Blackwell-Thompson. “As we lay the foundation for exploring our solar system, the NASA test directors are on the front lines of making it happen.”

An NTD works from a console in the firing room during integrated or hazardous testing, guiding the team through any contingency or emergency operations. They lead critical testing on Launch Pad 39B and the mobile launcher, the 370-foot-tall, 11 million-pound steel structure that will launch the SLS rocket and Orion spacecraft on Artemis missions to the Moon and on to Mars. This includes sound suppression, fire suppression and cryogenic fluid flow tests, as well as testing the crew access arm and umbilicals — connections that will provide communications, coolant and fuel up until launch.

While the majority of work for the ground and flight systems is pre-liftoff, the job certainly doesn’t end there.

Senior NASA Test Director Jeff Spaulding
Senior NASA Test Director Jeff Spaulding has nearly three decades of experience in the Test, Launch and Recovery Office. Photo credit: NASA/Cory Huston

“It culminates in a two-day launch countdown in which all of the groups, teams and assets are required to function together in an almost flawless performance to get us to launch,” said Senior NASA Test Director Jeff Spaulding.

Spaulding has nearly three decades of experience in the Test, Launch and Recovery Office. For Artemis I, he is leading the launch control team and support teams during the launch countdown for Blackwell-Thompson, who will oversee the countdown and liftoff of SLS.

Just over three miles from the launch pad, on launch day, Spaulding will be in the firing room running the final portion of cryogenic loading through launch. During this time, supercool propellants — called cryogenics — are loaded into the vehicle’s tanks. He will perform the same tasks for the wet dress rehearsal, which is a full practice countdown about two months before launch that includes fueling the tanks and replicating everything done for launch prior to main engine start.

At the end of the mission, part of the team will lead the recovery efforts aboard a Navy vessel after Orion splashdown. The NASA recovery director and supporting NTDs are responsible for planning and carrying out all operations to recover the Orion capsule onto a U.S. Navy ship. This includes working closely with the Department of Defense to ensure that teams coordinate recovery plans, meet requirements, and follow timelines and procedures to bring our heroes and spacecraft home quickly and safely.

“We are supported by numerous teams at Kennedy and elsewhere around the country that are helping us with our historic first flight as we blaze a path toward landing astronauts on the Moon in 2024,” Spaulding said.

NASA Helicopter Ready to Hitch a Ride to the Red Planet

NASA's Mars Helicopter inside Kennedy Space Center's Payload Hazardous Servicing Facility
NASA’s Mars Helicopter is installed on the agency’s Mars Perseverance rover inside the Payload Hazardous Servicing Facility at Florida’s Kennedy Space Center on April 6, 2020. Photo credit: NASA/JPL

NASA’s Mars Helicopter will make history in about 10 months when it becomes the first aircraft to fly on another world.

Now it has its ride to the Red Planet.

On April 6, 2020, the helicopter was attached to the belly of the agency’s Mars Perseverance rover. The installation took place inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, where the rover has remained since its Feb. 9, 2020, arrival from NASA’s Jet Propulsion Laboratory in Pasadena, California.

NASA Mars Helicopter and Mars Perseverance rover at Kennedy Space Center
NASA’s Mars Perseverance rover, carrying the agency’s Mars Helicopter, will touch down on the Red Planet on Feb. 18, 2021. Photo credit: NASA/JPL

The twin-rotor, solar-powered helicopter weighs less than 4 pounds; the total length of its rotors is about 4 feet, tip to tip. Its main purpose is a technology demonstration. After Perseverance safely lands on Mars, the helicopter will be released to perform the first in a series of flight tests that will take place during 30 Martian days (a day on Mars is about 40 minutes longer than a day on Earth).

For history’s first flight experimental flight test in the thin Martian atmosphere (less than 1% the density of Earth’s), the helicopter is tasked with hovering in the air a few feet off the ground for 20 to 30 seconds before landing. It is designed to fly on its own, without human control, using minimal commands from Earth sent in advance.

With the helicopter safely tucked away and covered by a shield to protect it during descent and landing, Perseverance will touch down on the Red Planet on Feb. 18, 2021. Liftoff aboard a United Launch Alliance Atlas V 541 rocket is targeted between July 17 and Aug. 5 from Cape Canaveral Air Force Station.

NASA’s Launch Services Program based at Kennedy is managing the launch. For more in-depth information, visit the mission’s website.

Wheels, Parachute Installed on Mars Perseverance Rover

Wheels are installed on NASA’s Mars Perseverance rover inside Kennedy Space Center’s Payload Hazardous Servicing Facility on March 30, 2020. Photo credit: NASA/JPL

The assembly, test and launch operations team from NASA’s Jet Propulsion Laboratory is working at NASA’s Kennedy Space Center in Florida, making significant strides in preparing the agency’s Mars Perseverance rover for its planned July 2020 launch. Final assembly and testing of the rover continue at Kennedy, including the recent installation of its wheels and parachute.

The rover received its six flight wheels on March 30. The wheels are re-engineered versions of the ones NASA’s Mars Curiosity rover has been using on the Red Planet.

Perseverance, which was developed under NASA’s Mars Exploration Program, will liftoff aboard a United Launch Alliance Atlas V 541 rocket from Cape Canaveral Air Force Station. NASA’s Launch Services Program based at Kennedy is managing the launch. The rover will land on Mars on Feb. 18, 2021.

NASA Shows Perseverance with Helicopter, Cruise Stage Testing

NASA’s Mars Helicopter and its cruise stage undergo functional testing in the airlock inside Kennedy Space Center’s Payload Hazardous Servicing Facility on March 10, 2020.
NASA’s Mars Helicopter and its cruise stage undergo functional testing in the airlock inside Kennedy Space Center’s Payload Hazardous Servicing Facility on March 10, 2020. Photo credit: NASA/Cory Huston

The Mars 2020 mission involving NASA’s newly named rover — Perseverance — received a significant boost following the completion of important testing at the agency’s Kennedy Space Center in Florida.

Activities to measure mass properties of the Cruise Stage vehicle were performed on the spin table inside the Payload Hazardous Servicing Facility. Successful testing also was performed on NASA’s Mars Helicopter, which will be attached to Perseverance. The functional test (50 RPM spin) was executed on the stand in the airlock. This marked the last time the rotor blades will be operated until the rover reaches the Martian surface.

The NASA Mars Helicopter will be the first aircraft to fly on another planet. The twin-rotor, solar-powered helicopter will remain encapsulated after landing, deploying once mission managers determine an acceptable area to conduct test flights.

NASA’s Mars Helicopter and its cruise stage undergo functional testing in the airlock inside Kennedy Space Center’s Payload Hazardous Servicing Facility on March 10, 2020.
The NASA Mars Helicopter will be the first aircraft to fly on another planet. Photo credit: NASA/Cory Huston

On March 5, 2020, NASA announced Perseverance as the new name for the ars 2020 rover. Alexander Mather, a seventh-grader from Virginia, provided the winning name for the rover with his entry in the agency’s Name the Rover essay contest.

Perseverance will land on the Red Planet on Feb. 18, 2021. Liftoff aboard a United Launch Alliance Atlas V 541 rocket is targeted for mid-July from Cape Canaveral Air Force Station. NASA’s Launch Services Program based at Kennedy is managing the launch.

About the size of a car with dimensions similar to the Curiosity rover, Perseverance was developed under NASA’s Mars Exploration Program. The mission aims to search for signs of past microbial life, characterize the planet’s climate and geology, collect samples for future return to Earth and pave the way for human exploration of Mars.

For more in-depth information, visit the mission’s website.

Mars 2020 Rover Undergoing Processing at Florida Spaceport

Mars 2020 rover at Kennedy Space Center
The launch of the Mars 2020 rover is targeted for mid-July. Photo credit: NASA/Kim Shiflett

Soon after its arrival to NASA’s Kennedy Space Center last week, the Mars 2020 rover was moved to the Florida spaceport’s Payload Hazardous Servicing Facility, where it has been undergoing processing for its mission later this year. The spacecraft was flown to Kennedy from California aboard a C-17 aircraft on Feb. 12.

Targeted for mid-July 2020, the mission will launch aboard a United Launch Alliance Atlas V 541 rocket from Cape Canaveral Air Force Station. The launch is managed by the Launch Services Program.

The Mars 2020 rover will search for signs of past microbial life, characterize the planet’s climate and geology, collect samples for future return to Earth and pave the way for human exploration of Mars.

Mars 2020 Rover Makes its Way to Kennedy

Mars 2020 rover arrival at Kennedy
The Mars 2020 rover is offloaded from a C-17 aircraft at the Launch and Landing Facility, formerly the Shuttle Landing Facility, at NASA’s Kennedy Space Center in Florida on Feb. 12, 2020. Photo credit: NASA/Cory Huston

Leaving from its temporary home at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, the Mars 2020 rover completed a cross-country trip Wednesday afternoon. It arrived on a C-17 aircraft to the Launch and Landing Facility (formerly the Shuttle Landing Facility) at NASA’s Kennedy Space Center in Florida.

Mars 2020 rover delivered to Kennedy Space Center
After its arrival at Kennedy from California, the Mars 2020 rover is prepared to be moved to the Florida spaceport’s Payload Hazardous Servicing Facility for unboxing. Photo credit: NASA/Cory Huston

The spacecraft was then moved to Kennedy’s Payload Hazardous Servicing Facility (PHSF), where it is being unboxed today. Before making the trek to the Florida spaceport, the Mars 2020 rover traveled about 70 miles southeast from JPL to March Air Reserve Base.

Carrying seven different scientific instruments, the Mars 2020 rover will land on the Red Planet on Feb. 18, 2021. Liftoff, aboard a United Launch Alliance Atlas V 541 rocket, is targeted for mid-July from Cape Canaveral Air Force Station. NASA’s Launch Services Program based at Kennedy is managing the launch.

About the size of a car with dimensions similar to the Curiosity rover, the Mars 2020 rover was developed under NASA’s Mars Exploration Program. The mission aims to search for signs of past microbial life, characterize the planet’s climate and geology, collect samples for future return to Earth and pave the way for human exploration of Mars.

Last month, multiple important tests were performed on the Mars 2020 rover aeroshell inside the PHSF, including measuring the center of gravity and moments of inertia on the spin table, as well as lift activities. The rover’s heat shield and back shell arrived at Kennedy from Lockheed Martin Space in Denver, Colorado, on Dec. 11, 2019. The spacecraft was manufactured at JPL.

Check out the mission’s website for more in-depth information on the Mars 2020 rover.