NASA Satellites Launch Aboard Virgin Orbit’s LauncherOne

Cornell University students work with the Pathfinder for Autonomous Navigation (PAN), a CubeSat that is part of NASA's 29th ELaNa mission.
Cornell University students work with the Pathfinder for Autonomous Navigation (PAN), a CubeSat that is part of NASA’s 29th ELaNa mission. Photo credit: Virgin Orbit

Virgin Orbit’s LauncherOne rocket detached from the company’s CosmicGirl aircraft at approximately 5:53 p.m. EST (2:53 p.m. PST) on Jan. 13, 2022,  launching NASA’s 29th Educational Launch of Nanosatellites (ELaNa) mission and the 13th CubeSat in the TechEdSat series. This launch, also known as STP-27VPB, lifted off at approximately 4:39 p.m. EST (1:39 p.m. PST) from Mojave Air and Space Port, California.

Cornell’s Pathfinder for Autonomous Navigation (PAN), the 29th ELaNa mission, will launch two small research satellites known as CubeSats to low-Earth orbit to demonstrate autonomous rendezvous at a low cost. PAN is the first CubeSat mission to attempt docking between two CubeSats and will represent one of the most advanced autonomous CubeSat systems that has flown to date.

CubeSats are a class of research spacecraft called nanosatellites, built to standard units, or “U,”  of 4 inches cubed. Often included as secondary payloads, CubeSats can be 1U, 2U, 3U, or 6U in size, typically weighing less than 3 pounds per unit and designed to carry out unique tasks once deployed into low-Earth orbit.

The PAN CubeSats, each measuring approximately 8 inches x 12 inches, feature a cold gas propulsion system, reaction wheel-based attitude control, and GPS navigation. A few months after launch, the satellites will match each other’s orbits and rendezvous to demonstrate future capabilities for on-orbit assembly.

The nanosatellites will use carrier-differential GPS to autonomously conduct rendezvous and docking operations. This method allows position measurement accurate to within several centimeters. If successful, the technology demonstrated by PAN will reduce the mass and complexity associated with traditional rendezvous and docking systems.

PAN was selected through NASA’s CubeSat Launch Initiative (CSLI) and assigned to this mission by the agency’s Launch Services Program (LSP) based at Kennedy Space Center in Florida. CSLI enables the launch of CubeSat projects designed, built, and operated by students, teachers, faculty, NASA centers, and nonprofit organizations. Managed by LSP, ELaNa missions provide a deployment opportunity or ride-share launches to space for the selected CubeSats.

The TechEdSat-13 team prepares the spacecraft for flight at Virgin Orbit’s payload processing facility in Long Beach, California. Photo credit: Virgin Orbit

TechEdSat-13, from NASA’s Ames Research Center in California’s Silicon Valley, is a 3U nanosatellite that carries a unique artificial intelligence/machine learning (AI/ML) module featuring the first orbital flight of a neuromorphic processor. This processor, the Intel Loihi, permits fast and efficient execution of AI/ML algorithms through a unique architecture that, in some ways, mimics the human brain.

In addition, there is a unique exo-atmospheric brake that will help rapidly de-orbit this and future nanosatellites. With this exo-brake technology, TechEdSat-13 will help address the accumulation and efficient disposal of orbital debris. This effort also helps to set the stage for autonomous navigation for nanosatellites to drop from orbit and reach their planned destination on Earth.

The TechEdSat flight series involves university interns and early career aerospace professionals. TechEdSat-13 was funded by various research groups within NASA, and the neuromorphic processor was provided by the Air Force Research Laboratory  Information Directorate.

NASA Tests Landing Pad Materials For Future Lunar Missions

Hot fire tests examined the suitability of the materials that could be used in the construction of landing pads on the lunar surface for large landers—materials like sintered basalt rock pavers, carbon fiber blankets, and carbon fiber blankets filled with a lunar regolith simulant.
Hot fire tests examined the suitability of the materials that could be used in the construction of landing pads on the lunar surface for large landers—materials like sintered basalt rock pavers, carbon fiber blankets, and carbon fiber blankets filled with a lunar regolith simulant. Photo Credit NASA.
Hot fire tests examined the suitability of the materials that could be used in the construction of landing pads on the lunar surface for large landers.
Hot fire tests examined the suitability of the materials that could be used in the construction of landing pads on the lunar surface for large landers. Photo credit: NASA

NASA’s Large Vehicle Landing Surface Interaction project team is working to develop a landing pad concept for the Moon that could one day be constructed directly on the lunar surface. Researchers from NASA’s Kennedy Space Center in Florida who are working on improving plume surface interaction models traveled to the Mojave Desert in California to conduct materials testing with Masten Space Systems late last year. Using hot gas from a rocket engine, they conducted a series of hot fire tests on samples of various materials similar to those found on the surface of the Moon. These tests examined the suitability of the materials that could be used in the construction of landing pads on the lunar surface for large landers—materials like sintered basalt rock pavers, carbon fiber blankets, and carbon fiber blankets filled with a lunar regolith simulant. Data from the hot fire testing will be used to design landing pad concepts for future NASA and commercial human lunar missions.

Hot fire tests examined the suitability of the materials that could be used in the construction of landing pads on the lunar surface for large landers.
Hot fire tests examined the suitability of the materials that could be used in the construction of landing pads on the lunar surface for large landers. Photo credit: NASA

In addition to hot fire test data, the team is developing models to better understand how a lander can affect the lunar surface. This data will allow NASA to identify safe locations for large landers and help enable the agency’s Artemis missions. NASA’s Large Vehicle Landing Surface Interaction project is a public-private partnership with SpaceX under the 2019 Announcement of Collaboration Opportunity.

Launch Date Set for NASA’s Laser Communications Relay Demonstration

NASA’s Laser Communications Relay Demonstration (LCRD) will launch aboard the U.S. Department of Defense’s (DoD) Space Test Program Satellite-6 (STPSat-6) spacecraft, targeted for Monday, Nov. 22, 2021 on a United Launch Alliance Atlas V 551 rocket from Launch Complex 41 on Cape Canaveral Air Force Station in Florida.

The LCRD technology demonstration is a step towards making operational laser, or optical, communications a reality. As space missions generate and collect more data, higher bandwidth communications technologies are needed to send it all back home. Laser communications will significantly benefit missions by increasing bandwidth 10 to 100 times more than radio frequency systems.

LCRD will implement various laser experiments to test the technology’s functionality and capabilities. Technology demonstrations like LCRD will enable the use of laser communications systems for future missions as NASA works to establish a robust presence on the Moon and prepares for crewed missions to Mars.

STPSat-6 is part of the third Space Test Program, or STP-3. To learn more about STP-3, visit: www.ulalaunch.com.

To stay updated about LCRD and laser communications, visit: https://www.nasa.gov/lasercomms.

NASA, Boeing Update Starliner Orbital Flight Test-2 Status

Starliner
The Boeing CST-100 Starliner spacecraft to be flown on Orbital Flight Test-2 (OFT-2) is seen in the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on July 12, 2021. Part of the agency’s Commercial Crew Program, OFT-2 is a critical developmental milestone on the company’s path to fly crew missions for NASA. Photo credit: Boeing

Editor’s note: This blog was updated Oct. 8 to reflect that the team is working toward launch opportunities in the first half of 2022 for Orbital Flight Test-2.

The NASA, Boeing team continues to make progress on the investigation of the oxidizer isolation valve issue on the Starliner service module propulsion system that was discovered ahead of the planned uncrewed Orbital Flight Test-2 (OFT-2) mission to the International Space Station in August.

“I am proud of the work our integrated teams are doing,” said Steve Stich, manager of the Commercial Crew Program at NASA’s Kennedy Space Center in Florida. “This is a complex issue involving hazardous commodities and intricate areas of the spacecraft that are not easily accessed. It has taken a methodical approach and sound engineering to effectively examine.”

Boeing has demonstrated success in valve functionality using localized heating and electrical charging techniques. Troubleshooting on the pad, at the launch complex, and inside the Starliner production factory at Kennedy Space Center has resulted in movement of all but one of the original stuck valves. That valve has not been moved intentionally to preserve forensics for direct root cause analysis.

Most items on the fault tree have been dispositioned by the team including causes related to avionics, flight software and wiring. Boeing has identified a most probable cause related to oxidizer and moisture interactions, and although some verification work remains underway, our confidence is high enough that we are commencing corrective and preventive actions. Additional spacecraft and component testing will be conducted in the coming weeks to further explore contributing factors and necessary system remediation before flight.

Boeing completed a partial disassembly of three of the affected Orbital Maneuvering and Attitude Control (OMAC) thruster valves last month and plans to remove three valves from the OFT-2 spacecraft in the coming weeks for further inspection. The team also is evaluating additional testing to repeat the initial valve failures.

Boeing has identified several paths forward depending on the outcome of the testing to ultimately resolve the issue and prevent it from happening on future flights. These options could range from minor refurbishment of the current service module components to using another service module already in production. Each option is dependent on data points the team expects to collect in the coming weeks including a timeline for safely proceeding back to the launch pad.

“Safety of the Starliner spacecraft, our employees, and our crew members is this team’s number one priority,” said John Vollmer, vice president and program manager, Boeing’s Starliner program. “We are taking the appropriate amount of time to work through the process now to set this system up for success on OFT-2 and all future Starliner missions.”

Potential launch windows for OFT-2 continue to be assessed by NASA, Boeing, United Launch Alliance, and the Eastern Range. The team currently is working toward opportunities in the first half of 2022 pending hardware readiness, the rocket manifest, and space station availability.

Orion Spacecraft Goes ‘Shields Up’ for Artemis I

The four ogive fairings for the Orion Artemis I mission are installed on the launch abort system assembly inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida on Aug. 20, 2021.
The four ogive fairings for the Orion Artemis I mission are installed on the launch abort system assembly inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida on Aug. 20, 2021. Photo credit: NASA/Kim Shiflett

Teams at NASA’s Kennedy Space Center in Florida are putting the final touches on the Orion spacecraft for the Artemis I mission by connecting the ogive fairings for the launch abort system (LAS) assembly.  Pronounced oh-jive, the ogive fairings consist of four protective panels, and their installation will complete the LAS assembly.

Technicians and engineers from the center’s Exploration Ground Systems and contractor Jacobs recently finished attaching the launch abort tower to the top of the Orion crew module. They then began lifting and mating the lightweight fairings, which will shield the crew module from the severe vibrations and sounds it will experience during launch. One of the fairing panels has a hatch to allow access to the crew module before launch.

During Artemis missions, the 44-foot-tall LAS will detach from the spacecraft when it is no longer needed, shortly after launching on the Space Launch System (SLS) rocket, to lighten the journey to the Moon. Although the abort motors will not be active on the uncrewed Artemis I flight test, the system is intended to protect astronauts on future missions if a problem arises during launch or ascent by pulling the spacecraft away from a failing rocket.

Once LAS installation is complete, the spacecraft will leave the Launch Abort System Facility and continue on its path to the pad, making its way to the spaceport’s Vehicle Assembly Building to be integrated with the SLS rocket ahead of the launch.

Starliner Returns to Factory, Preparations Underway to Resolve Valve Issue

OFT-2 Starliner spacecraft
Boeing’s Starliner spacecraft returned Aug. 19, 2021, from the United Launch Alliance Vertical Integration Facility to the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida, where teams will work to diagnose and resolve a valve issue detected during the Aug. 3 launch attempt of NASA Boeing’s Orbital Flight Test-2. Photo credit: Boeing

Teams from Boeing and United Launch Alliance (ULA) safely returned the CST-100 Starliner to its production facility in Florida on Aug. 19 for continued work on the spacecraft’s service module propulsion system.

The Starliner Orbital Flight Test-2 spacecraft was removed from its Atlas V rocket inside the Vertical Integration Facility at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida and returned to the Commercial Crew and Cargo Processing Facility on NASA’s Kennedy Space Center.

The team now will perform propulsion system checkouts inside the factory’s hazardous processing area and determine the appropriate vehicle configuration for accessing and analyzing the system further. NASA and Boeing will recommend forward work as part of a formal process designed to aid in determining root cause and remediation steps.

In the weeks ahead, engineering teams from NASA and Boeing will work to diagnose and ultimately resolve a valve issue detected during the Aug. 3 countdown for NASA’s Boeing Orbital Flight Test-2, and resulted in the decision to postpone the launch destined for the International Space Station.

NASA, Boeing, and ULA will establish a new launch date once the issue is resolved.

NASA, Boeing to Move Starliner to Production Facility for Propulsion System Evaluation

Boeing's CST-100 Starliner spacecraft is in view in the United Launch Alliance Vertical Integration Facility at Space Launch Complex 41 on Aug. 9, 2021.
Boeing’s CST-100 Starliner spacecraft is in view in the United Launch Alliance Vertical Integration Facility at Space Launch Complex 41 on Aug. 9, 2021. Photo credit: Boeing

NASA and Boeing have decided to postpone the launch of Orbital Flight Test-2 to the International Space Station as teams continue work on the CST-100 Starliner propulsion system.

Engineering teams have been working to restore functionality to several valves in the Starliner propulsion system from inside United Launch Alliance’s Vertical Integration Facility that did not open as designed during the launch countdown for the Aug. 3 launch attempt. The valves connect to thrusters that enable abort and in-orbit maneuvering.

“We made a lot of progress to open the valves from inside the Vertical Integration Facility, and the NASA-Boeing teams did a great job doing everything we could to get ready for this launch opportunity,” said Kathryn Lueders, associate administrator for NASA’s Human Exploration and Operations Mission Directorate. “Although we wanted to see Starliner fly in this window, it’s critical that our primary focus is the safety of the crew transportation system – for the safety of the space station and the crew members that will be flying on these vehicles. We’ll only fly this test when we think we are ready, and can complete the mission objectives.”

Inside the VIF, Boeing was able to prompt nine of 13 valves open that previously were in the closed position using commanding, mechanical, electrical and thermal techniques. Teams will now begin the process to move Starliner back to Boeing’s Commercial Crew and Cargo Processing Facility in Florida for deeper-level troubleshooting of four propulsion system valves that remain closed and more detailed analysis on the spacecraft.

“Mission success in human spaceflight depends on thousands of factors coming together at the right time,” said John Vollmer, vice president and program manager, Boeing’s Commercial Crew Program. “We’ll continue to work the issue from the Starliner factory and have decided to stand down for this launch window to make way for other national priority missions.”

NASA, Boeing and ULA will establish a new launch date once the issue is resolved.

NASA’s Lucy Spacecraft Readies for Launch at Kennedy

The shipping container holding NASA's Lucy spacecraft is unloaded from an Air Force C-17 cargo plane on the runway of the Launch and Landing Facility at Kennedy Space Center in Florida on July 30, 2021.
The shipping container holding NASA’s Lucy spacecraft is unloaded from an Air Force C-17 cargo plane on the runway of the Launch and Landing Facility at Kennedy Space Center in Florida on July 30, 2021. Photo credit: NASA/Kim Shiflett

NASA’s Lucy spacecraft is now in Florida – its final Earth-bound destination – before embarking on a mission to study the Jupiter Trojan asteroids. A United States Air Force C-17 cargo plane from Charleston Air Force Base in South Carolina, flew to Buckley Space Force Base in Aurora, Colorado, to pick up the spacecraft. The aircraft, with Lucy safely inside, then touched down at the Launch and Landing Facility runway at NASA’s Kennedy Space Center on July 30, 2021. From there, the spacecraft was transported to an Astrotech Space Operations processing facility in nearby Titusville to undergo final preparations before liftoff.

Named after a fossilized human ancestor whose skeleton provided discoverers insight into humanity’s evolution, the Lucy mission will do much of the same, providing scientists and researchers a look into the origins of our solar system.

The Trojan asteroids orbit the Sun in two groups: one group lies ahead of Jupiter while the other trails behind. Stabilized by both the Sun and Jupiter, those swarms of asteroids are thought to be remnants of the initial material that formed the planets within the solar system. Throughout the duration of the mission, Lucy will visit eight different asteroids over the span of 12 years, unlocking new information about the primitive bodies that created our early solar system.

Lucy is scheduled to launch on a United Launch Alliance Atlas V rocket from Cape Canaveral Space Force Station on Oct. 16. The launch is being managed by the NASA’s Launch Services Program based at Kennedy, America’s multi-user spaceport. The mission will be the first to study the Trojans.

NOAA’s GOES-T Launch Now Targeting Jan. 8, 2022

Artist's rendering of GOES-R.
Artist’s rendering of GOES-R. Credits: NASA

NASA and the National Oceanic and Atmospheric Administration (NOAA) are now targeting Jan. 8, 2022, for the launch of the Geostationary Operational Environmental Satellite T (GOES-T) mission. The launch was previously planned for Dec. 7, 2021.  NASA, NOAA, and United Launch Alliance (ULA) coordinated the new target date to optimize launch schedules for missions flying from Space Launch Complex-41.

The GOES-T satellite is part of the GOES-R series that will maintain the two-satellite system extending the operational lifetime through December 2036.The GOES satellite network helps meteorologists observe and predict local weather events, including thunderstorms, tornadoes, fog, hurricanes, flash floods and other severe weather.

GOES-T will launch from Cape Canaveral Space Force Station in Florida on a United Launch Alliance Atlas V 541 rocket. The two-hour launch window will open at 4:33 p.m. EST. This launch is being managed by NASA’s Launch Services Program.

NOAA manages the GOES-R Series Program through an integrated NOAA-NASA office, administering the ground system contract, operating the satellites, and distributing their data to users worldwide. NASA’s Goddard Space Flight Center oversees the acquisition of the GOES-R spacecraft and instruments. Lockheed Martin designs, creates, and tests the GOES-R series satellites. L3Harris Technologies provides the main instrument payload, the Advanced Baseline Imager, along with the ground system, which includes the antenna system for data reception.

Looking forward, NOAA is working with NASA on the next-generation geostationary satellite mission called GeoXO, which will bring new capabilities in support of U.S. weather, ocean, and climate operations in the 2030s. NASA will manage the development of the satellites GeoXO satellites and launch them for NOAA.

What You Need to Know about NASA’s Boeing Orbital Flight Test 2

The Boeing CST-100 Starliner spacecraft is secured atop a United Launch Alliance Atlas V rocket at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Space Force Station in Florida on July 17, 2021. Starliner will launch on the Atlas V for Boeing’s second Orbital Flight Test (OFT-2) for NASA’s Commercial Crew Program. The spacecraft rolled out from Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center earlier in the day.
The Boeing CST-100 Starliner spacecraft is secured atop a United Launch Alliance Atlas V rocket at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Space Force Station in Florida on July 17, 2021. Starliner will launch on the Atlas V for Boeing’s second Orbital Flight Test (OFT-2) for NASA’s Commercial Crew Program. The spacecraft rolled out from Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center earlier in the day. Photo credit: Boeing/John Grant

Leerlo en español aquí.

NASA and Boeing are taking another major step on the path to regular human spaceflight launches to the International Space Station on American rockets and spacecraft from American soil with the second uncrewed flight test of Boeing’s CST-100 Starliner as part of the agency’s Commercial Crew Program.

NASA’s Boeing Orbital Flight Test-2 (OFT-2) is targeting launch of the Starliner spacecraft on a United Launch Alliance Atlas V rocket at 2:53 p.m. EDT Friday, July 30, from Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida. Starliner is expected to arrive at the space station for docking about 24 hours later with more than 400 pounds of NASA cargo and crew supplies.

The mission will test the end-to-end capabilities of Starliner from launch to docking, atmospheric re-entry, and a desert landing in the western United States. OFT-2 will provide valuable data that will help NASA certify Boeing’s crew transportation system to carry astronauts to and from the space station.

Read the full feature here.