Orion Test Articles Arrive to Kennedy for Testing on Future Artemis Missions

NASA’s Super Guppy arrives at Kennedy Space Center’s Launch and Landing Facility in Florida on Sept. 11, 2020, carrying the Orion Service Module Structural Test Article (SM-STA). Photo credit: NASA/Yulista Tactical Services, LLC/Tommy Quijas

The Orion Service Module Structural Test Article (SM-STA), composed of the European Service Module (ESM) and Crew Module Adapter (CMA), arrived at NASA’s Kennedy Space Center in Florida following the completion of the test campaign to certify the Orion Service Module for Artemis I. Transported via Super Guppy from Lockheed Martin’s test facility in Denver, Colorado, on Sept. 11, components will now be used in testing for future Artemis missions.

“The Orion SM-STA supported testing in multiple configurations to validate the structural robustness of the vehicle under a variety of conditions that a spacecraft will experience on lunar missions for the Artemis program,” said Rafael Garcia, Orion Test and Verification lead.

At Kennedy, the Orion SM-STA test article will be separated from the CMA test article, and portions of the CMA test article will support qualifications tests in preparation for the Artemis II mission. The test version of the ESM will remain at Kennedy, in order to support future structural qualification tests such as testing what volume of sound and how much shaking the vehicle can handle for future Artemis missions.

When tested together, the full test stack of Orion verified the spacecraft’s structural durability for all flight phases of the Artemis I flight, which is designed to be an opportunity to test the kind of maneuvers and environments the spacecraft will see on future exploration missions. The test structures experienced launch and entry loads tests, intense acoustic vibration force, and shock tests that recreate the powerful blasts needed for critical separation events during flight. A lightning test was performed to evaluate potential flight hardware damage if the vehicle were to be hit by lightning prior to launch.

The Artemis II flight will test a hybrid free return trajectory, which uses the Moon’s gravitational pull as a slingshot to put Orion on the return path home instead of using propulsion. With astronauts aboard the spacecraft, additional validation is required of all vehicle components to certify the capsule prior to proving lunar sustainability with Artemis III and beyond.

The first in a series of increasingly complex missions, Artemis I will test the Orion spacecraft and Space Launch System as an integrated system ahead of crewed flights to the Moon. Under the Artemis program, NASA will land the first woman and the next man on the Moon in 2024.

Final Launch Abort System Motor Arrives for Artemis II Crewed Mission

The attitude control motor for the Artemis II mission arrives in the Launch Abort System Facility at NASA's Kennedy Space Center in Florida on Aug. 28, 2020.
The attitude control motor for the Artemis II mission arrives in the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida on Aug. 28, 2020. Photo credit NASA/Ben Smegelsky

The last of three motors required to assemble the Launch Abort System for NASA’s Artemis II mission–the first crewed mission of the Orion spacecraft–arrived at Kennedy Space Center in Florida on August 28. The attitude control motor (ACM) was delivered by truck from Northrop Grumman’s manufacturing facility in Maryland, to the Launch Abort System Facility (LASF) at Kennedy.

During launch of Orion atop the agency’s Space Launch System rocket, the LAS motors work together to separate the spacecraft from the rocket in the unlikely event of an emergency during launch. The LAS includes three motors – the launch abort motor, the jettison motor, and the attitude control motor—that once activated, will steer the spacecraft carrying the astronauts to safety. The launch abort and attitude control motors were manufactured by Northrop Grumman; the jettison motor was manufactured by Aerojet Rocketdyne.

The ACM operates to keep Orion’s crew module on a controlled flight path in the event it needs to jettison and steer away from the rocket. It then reorients the crew module for parachute deployment and landing. The motor consists of a solid propellant gas generator, with eight proportional valves equally spaced around the outside of the 32-inch diameter motor. Together, the valves can exert up to 7,000 pounds of steering force to the vehicle in any direction upon command from the crew module.

Inside the LASF, the motor will be placed on a special trailer for future integration with the rest of the LAS elements. It will remain in the LASF midbay, where the Artemis I LAS is being integrated with its designated crew and service module for its mission next year.

Artemis II is the first crewed flight in a series of increasingly complex missions to the Moon that will lay the foundation for exploration of Mars and beyond. Artemis II will confirm all of the Orion spacecraft’s systems operate as designed in the actual environment of deep space with astronauts aboard. As part of the Artemis program, NASA will send the first woman and next man to the Moon in 2024.

NASA Pins Down First Step in SLS Stacking for Artemis I

Inside the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida, Payton Jones, at left, a launch vehicle processing technician, and Bradley Bundy, a spaceflight technician, both with Jacobs, complete the first mate pinning of the right-hand motor segment to the right-hand aft skirt on one of the two solid rocket boosters for the agency’s Space Launch System.
Inside the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida, Payton Jones, at left, a launch vehicle processing technician, and Bradley Bundy, a spaceflight technician, both with Jacobs, complete the first mate pinning of the right-hand motor segment to the right-hand aft skirt on one of the two solid rocket boosters for the agency’s Space Launch System. Photo credit: NASA/Kim Shiflett

About a dozen technicians and engineers from Exploration Ground Systems worked together recently at NASA’s Kennedy Space Center to carry out the first step in stacking the twin solid rocket boosters that help launch NASA’s Space Launch System (SLS) rocket for the first Artemis lunar mission

Inside the Florida spaceport’s Rotation, Processing and Surge Facility, the NASA and Jacobs team completed a pin. The pinning activity involved using bolts to attach one of five segments that make up one of two solid rocket boosters for SLS to the rocket’s aft skirt. A crane crew assisted in mating the aft segments to the rocket’s two aft skirts.

Inside the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida, Pablo Martinez, a handling, mechanical and structures engineer on the Jacobs Technology Inc. Test and Operations Support Contract, prepares to insert the first of many pins that will secure the Space Launch System’s right-hand motor segment to the rocket’s right-hand aft skirt.
Inside the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida, Pablo Martinez, a handling, mechanical and structures engineer on the Jacobs Technology Inc. Test and Operations Support Contract, prepares to insert the first of many pins that will secure the Space Launch System’s right-hand motor segment to the rocket’s right-hand aft skirt. Photo credit: NASA/Kim Shiflett

A handful of the team members gained pinning experience on boosters for the space shuttle, while the rest were first-time pinners. Pablo Martinez, Jacobs TOSC handling, mechanical and structures engineer, inserted the first of 177 pins per joint to complete the first official step in stacking the SLS boosters.

The next step is a move to Kennedy’s iconic Vehicle Assembly Building to await stacking on the mobile launcher.

Manufactured by Northrop Grumman in Utah, the 177-foot-tall twin boosters provide more than 75 percent of the total SLS thrust at launch. SLS is the most powerful rocket NASA has ever built.

The SLS rocket will launch NASA’s Orion spacecraft and send it to the Moon for Artemis I — a mission to test the two as an integrated system, leading up to human missions to the Moon. Under the Artemis program, NASA will land the first woman and the next man on the Moon by 2024.

View a video of booster segment mate pinning.

Dream Chaser® Spaceplane Pressure Test Article Arrives at Kennedy Space Center

Sierra Nevada Corporations test article inside the SSPF at Kennedy Space Center in Florida.
Inside the low bay of the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, workers assist as Sierra Nevada Corporation’s (SNC) Dream Chaser pressure test article on its support structure is lowered by crane on June 3, 2020, for its move into the high bay. Photo credit: NASA/Kim Shiflett

Sierra Nevada Corporation’s (SNC) Dream Chaser pressure test article arrived at NASA’s Kennedy Space Center in Florida on June 3, 2020, from Louisville, Colorado, and was transported to the high bay in the Space Station Processing Facility.

The test article is similar to the actual pressurized cabin being used in the Dream Chaser spaceplane for Commercial Resupply Services-2 (CRS-2) missions. NASA selected Dream Chaser to provide cargo delivery, return and disposal service for the International Space Station under the CRS-2 contract.

Under the contract, Dream Chaser will provide a minimum of six cargo missions to and from the space station, carrying critical supplies like food, water and science experiments, and return to Earth with a landing at Kennedy’s Launch and Landing Facility, managed by Space Florida.

The pressure test article was used to validate that Dream Chaser can withstand the demands associated with repeated launches and returns from space. SNC designed the Dream Chaser spacecraft to be reusable for as many as 15 missions. The pressure article specifically verified the composite and bonded structure of the spacecraft.

The test article will remain at Kennedy while SNC engineers use it to develop and verify refurbishment operations that will be used on Dream Chaser between flights.

Launch Complex 39B Prepared to Support Artemis I

An aerial view of Launch Complex 39B at NASA's Kennedy Space Center in Florida.
An aerial view of Launch Complex 39B at NASA’s Kennedy Space Center in Florida with Exploration Ground Systems’ mobile launcher for the Artemis I mission on the pad. The mobile launcher, atop crawler-transporter 2, made a solo trek from the Vehicle Assembly Building to the surface of pad B in June 2019 for integrated testing. Photo credit: NASA/Frank Michaux

A legacy of the Apollo Program and shuttle era, Launch Pad 39B at NASA’s Kennedy Space Center in Florida is the site of NASA’s return to the Moon and is now ready for Artemis I—an uncrewed mission around the Moon and back. For the past few years, Exploration Ground Systems (EGS) has modified and upgraded the launch pad for the Space Launch System (SLS) rocket and Orion spacecraft to help accomplish NASA’s lunar exploration goals.

A water flow test was completed with the mobile launcher at Launch Pad 39B at NASA's Kennedy Space Center in Florida.
A wet flow test at Launch Pad 39B on Sept. 30, 2019, tests the sound suppression system that will be used for launch of NASA’s Space Launch System for the Artemis I mission. During the test, about 450,000 gallons of water poured onto the Pad B flame deflector, the mobile launcher flame hole and on the launcher’s blast deck. This was the first time the ground launch sequencer that will be used on the day of launch was used for the timing of a sound suppression test. Photo credit: NASA/Kim Shiflett

“Getting the pad ready for Artemis I has transformed the site for a new generation of space exploration,” said Regina Spellman, EGS senior project manager for Pad 39B. “When I look back on when we first inherited it from the Space Shuttle Program to where we are today, I am so proud of all the amazing things that the team has accomplished.”

Engineers have replaced or upgraded pad subsystems used for Apollo and the Space Shuttle Program to support the powerful SLS rocket and multi-user spaceport. The guiding principle behind the upgrades and modifications has been to make the area a clean pad, one with no launch support structures on top, which will allow a variety of rockets to launch from the pad.

The main flame deflector and flame trench are in view at Launch Pad 39B at NASA's Kennedy Space Center in Florida.
Construction is complete on the main flame deflector in the flame trench at Launch Complex 39B at NASA’s Kennedy Space Center in Florida. The flame deflector will safely deflect the plume exhaust from the Space Launch System rocket during launch. It will divert the rocket’s exhaust, pressure and intense heat to the north at liftoff. Exploration Ground Systems refurbished the pad to support the launch of the SLS rocket and Orion on Artemis I, the first uncrewed mission for the agency’s Artemis program. Photo credit: NASA/Kim Shiflett

“The Ground Systems architecture with a clean pad concept minimizes the time the vehicle is out at the pad, exposed to the elements. It also minimizes the amount of exposed infrastructure that has to be maintained between launches,” Spellman said.

The basics that every rocket needs are in place, such as electrical power, a water system, flame trench and safe launch area. The other needs of individual rockets, including access for workers, can be met with the towers, such as a mobile launcher.

During the refurbishment projects, teams removed and replaced 1.3 million feet of copper cables with 300,000 feet of fiber cable. The water tower for the upgraded sound suppression system holds roughly 400,000 gallons of water, or enough to fill 27 average swimming pools. At ignition and liftoff, this water is dumped on the mobile launcher and inside the flame trench in less than 30 seconds. The three lightning towers surrounding the pad are each about 600 feet tall – taller than the Vehicle Assembly Building, which is 525 feet tall. They form a linked system of wires above the pad that will protect the launch vehicle during storms.

The refurbished flame trench — the size of one and a half football fields — and new flame deflector will be exposed to a peak temperature of 2,200 degrees Fahrenheit during launch. Technicians installed more than 96,000 heat-resistant bricks on the walls of the flame trench during the refurbishment project.

“The EGS pad team has already ramped up to prepare the pad for the second Artemis mission when we will launch humans,” Spellman said. “Several projects are underway, some even under construction, which will support the flight crew.”

Work now is in progress on a new liquid hydrogen tank as well as an emergency egress system for Artemis II, the first crewed launch.

Apollo 10 was the first mission to begin at Launch Pad 39B when it lifted off May 18, 1969, to rehearse the first Moon landing. Three crews of astronauts launched from the pad to the Skylab space station in 1973. Three Apollo astronauts who flew the historic Apollo-Soyuz Test Project mission to link up in space also launched from the pad in 1975. In all, 53 space shuttle missions and the Ares I-X test flight launched from the pad between 1986 and 2011.

“The work and the team itself has evolved over the years, but one thing has always been constant, we have always been dedicated to getting Launch Pad 39B back to launching humans to space, farther and safer than ever before,” Spellman said.

Launch Abort Motor for Orion’s Artemis II Mission Arrives at Kennedy Space Center

The launch abort system motor for the Artemis II mission arrives at Kennedy Space Center on April 13, 1970.
The launch abort motor for Orion’s launch abort system (LAS) for Artemis II, enclosed in its shipping container, arrives at NASA’s Kennedy Space Center in Florida on April 13, 2020. The motor arrived from Northrop Grumman in Promontory, Utah, and was transported to the Launch Abort System Facility where it will undergo testing in preparation for the second Artemis mission. The launch abort motor is one of three motors on the LAS. The LAS will be positioned atop the Orion crew module and is designed to protect astronauts if a problem arises during launch by pulling the spacecraft away from a failing rocket. Artemis II will take the first humans in orbit around the Moon in the 21st century.

Kennedy Space Center has received a critical piece of hardware in support of the Artemis II crewed mission. The launch abort motor for Orion’s Launch Abort System (LAS) arrived in Florida April 13 from Northrop Grumman in Promontory, Utah, and was transported to the Launch Abort System Facility where it will undergo testing in preparation for use on the second Artemis mission.

The launch abort motor is one of three motors on the LAS and is capable of producing about 400,000 pounds of thrust to steer and pull the crew module away from the rocket. The attitude control motor and the jettison motor complete the trio of motors responsible for controlling the LAS.

The LAS weighs about 16,000 pounds and is installed on top of the Orion crew module. It is designed to protect astronauts in the unlikely event of an emergency during launch or ascent. The system pulls the spacecraft away from a falling rocket and reorients the crew module to provide a safe landing for the crew.

Under the Artemis program, NASA will land the first woman and next man on the Moon. Orion will launch atop the agency’s Space Launch System rocket to carry astronauts to space, provide emergency abort capability, sustain the crew during space travel, and provide safe re-entry from deep space return velocities. NASA will develop a sustainable presence at the Moon and apply knowledge gained to pave the way for human exploration of Mars.

Using Augmented Reality to Prepare Orion Hardware for Artemis II Crewed Mission

A technician wears a pair of augmented reality goggles to perform work on Orion hardware in the O&C high bay at Kennedy Space Center in Florida.
Mary Lakaszcyck, a technician with ASRC Federal Data Solutions, demonstrates a pair of augmented reality (AR) goggles inside the high bay of the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida on Jan. 16, 2020. Orion manufacturer Lockheed Martin provided the goggles to technicians to help place tapes where components will be installed on the Orion crew module adapter for NASA’s Artemis II mission, the first crewed mission aboard the spacecraft. Using the AR goggles saves significant labor and time to complete tasks. Photo credit: NASA/Cory Huston
A technician wears a pair of augmented reality goggles to work on the crew module for NASA's Artemis II mission in the O&C high bay at NASA's Kennedy Space Center in Florida.
Michael Maxwell, with Lockheed Martin’s augmented reality team, wears a pair of augmented reality (AR) goggles to work on the crew module for NASA’s Artemis II inside the high bay of the Neil Armstrong Operations and Checkout Building at the agency’s Kennedy Space Center in Florida on March 18, 2020. Photo credit: NASA/Kim Shiflett

Augmented reality, also known as AR, is a powerful tool that engineers are using to enable NASA to send humans to the Moon under the agency’s Artemis program. Lockheed Martin, lead contractor for NASA’s Orion spacecraft, is currently using AR to increase efficiency in building the spacecraft for Artemis II, the first crewed mission aboard Orion.

Mary Lakaszcyck, a technician with ASRC Federal Data Solutions, a subcontractor to Lockheed Martin, wears a pair of AR goggles as she places tape in locations where technicians will install parts on Orion’s crew module adapter. The work is taking place in the high bay of the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.

The goggle technology provides a unique function for understanding the dynamic work environment of assembling complex hardware, such as a spacecraft that will fly humans to deep space. Instead of interpreting the work procedure from text or models on a 2-D screen, the instructions appear overlaid in 3-dimensional space onto the physical spacecraft while wearing the goggles.

“I honestly cannot express how helpful, time-saving, and fun, the AR goggles are to use,” Lakaszcyck said. “For something we are used to doing in at least a week’s time, or eight to 12 shifts, we were able to complete in one shift.”

Jennifer Solano, with Lockheed Martin at Kennedy Space Center in Florida, wears a pair of augmented reality (AR) goggles to work on crew module hardware for NASA’s Artemis II mission inside the high bay of the Neil Armstrong Operations and Checkout Building at Kennedy on March 18, 2020. Photo credit: NASA/Kim Shiflett

Lakaszcyck said looking through the goggles and seeing exactly where to place items on the spacecraft, what orientation to place them, and the reference number that accompanies them, makes the process more efficient than ever.

The goggles are not a passing fad. They are one of the specialized tools in Lockheed Martin’s repertoire used by the processing team to prepare the Orion spacecraft for its flight. The company started using the technology in 2017.

“We used the goggles on manufacturing activities for the Orion that will fly on Artemis I,” said Shelley Peterson, who specializes in augmented and mixed reality with Lockheed Martin. “Augmented reality is helping us push the boundaries to perform activities much more rapidly than with traditional methods.”

Carlos Garcia, NASA crew module adapter assembly, integration and test lead for Orion production operations, is pleased with the time-saving results from using AR technology for click bonds. Click bonds are fasteners that secure the miles of wiring harnesses to the spacecraft structure.

“For the crew module adapter effort, using this technology for locating click bonds for securing harnesses equated to up to a three week savings,” said Garcia.

AR goggle-wearers will place several critical spaceflight components on the Orion hardware, including the crew module and heat shield for Artemis II. They also will use augmented reality work instructions to assemble the crew seats for the spacecraft.

“Across four sites, we use augmented reality to complete spacecraft manufacturing activities in 90% less time than with traditional methods. For example, an activity that normally takes 8 hours could be completed in 45 minutes,” Peterson said. “If we look just at fasteners, one Orion space vehicle has more than 57,000 cable harness fasteners. Saving time per fastener adds up quickly!”

Peterson says using augmented reality work instructions removes almost all of the interpretation, and workers understand the task at hand immediately.

Manufactured by Microsoft, the HoloLens 2 is the second iteration of the goggles used by Lockheed Martin. Lockheed builds the content for the goggles in-house using WorkLink, an augmented reality software platform developed by Scope AR.

“Looking back even four years ago, I never would have pictured myself working hands-on with a spacecraft going into deep space,” Lakaszcyck said. “I’ve worked on three different vehicles, including the current one for Artemis II that will take humans into space. Now that I am a part of the Artemis generation, it is an irreplaceable feeling of not just excitement, but responsibility.”

Under the Artemis program, NASA will land the first woman and the next man on the Moon. Orion will launch on the agency’s Space Launch System rocket to carry the crew to space, provide emergency abort capability, sustain the crew during space travel, and provide safe re-entry from deep space return velocities. NASA will develop a sustainable presence at the Moon and apply knowledge gained to send astronauts to Mars.

Help NASA Design a Robot to Dig on the Moon

A close-up view of the bucket drums on the Regolith Advanced Surface Systems Operations Robot (RASSOR) in the regolith bin inside Swamp Works at NASA’s Kennedy Space Center in Florida on June 5, 2019.
A close-up view of the bucket drums on the Regolith Advanced Surface Systems Operations Robot (RASSOR) in the regolith bin inside Swamp Works at NASA’s Kennedy Space Center in Florida on June 5, 2019. Photo credit: NASA/Kim Shiflett

Digging on the Moon is a hard job for a robot. It has to be able to collect and move lunar soil, or regolith, but anything launching to the Moon needs to be lightweight. The problem is excavators rely on their weight and traction to dig on Earth. NASA has a solution, but is looking for ideas to make it better. Once matured, robotic excavators could help NASA establish a sustainable presence on the Moon under the Artemis lunar exploration program, a few years after landing astronauts on the surface.

Engineers have tested various configurations of a Moon-digging robot called RASSOR – short for Regolith Advanced Surface Systems Operations Robot – in a large lunar simulant sand box at NASA’s Kennedy Space Center in Florida. Now, NASA is asking the public to help design a new bucket drum, the portion of the robot that captures the regolith and keeps it from falling out. The regolith can then be transported to a designated location where reverse rotation of the drum allows it to fall back out.

RASSOR’s current bucket drums are hollow cylinders positioned on either end of the robot, with scoops around the circumference of the cylinders. The robot digs in opposing ends toward the other, which balances the excavation forces and makes it easier to dig.

NASA’s RASSOR Bucket Drum Design Challenge is open through April 20, 2020. The challenge, sponsored by NASA’s Space Technology Mission Directorate (STMD), seeks a better shape for RASSOR’s bucket drum and baffling, or sheet metal inside of it that can capture and hold more regolith. GrabCAD, a website people can join and post 3D models of almost anything, hosts the challenge and eligible individuals, with an idea can submit original designs that have not been previously published, exhibited or put into production for this important part of RASSOR.

“We’ve held challenges on GrabCAD in the past and they were very successful,” said Jason Schuler, a robotics engineer in the Exploration Research and Technology Programs at Kennedy. “As a repository for computer-aided design, the platform helps us reach professional designers, engineers, manufacturers and students outside of the space industry who may have an idea that could benefit NASA.”

Successful designs for this competition will have a fill ratio of higher than 50%, which means the design’s interior volume will be more than half full with regolith when it reached the maximum amount it can hold.

“With RASSOR, we’re no longer relying on the traction or the weight of the robot. It is possible to excavate on the Moon or Mars with a really lightweight robot,” Schuler said.

“RASSOR is excavation and transportation all in one, but we’d like to improve the design.”

At the end of the competition, the design entries will be judged on a set of criteria, including width of the scoops, bucket drum mass, diameter and length, volume of regolith captured and practicality of the design. In addition to the CAD files, entries must include a short description of how the design works.

A total of $7,000 will be awarded for the top five submissions. For more information about prize amounts and how to enter, visit:

https://grabcad.com/challenges/nasa-regolith-advanced-surface-systems-operations-robot-rassor-bucket-drum-design-challenge

 The challenge is funded by NASA’s Lunar Surface Innovation Initiative within STMD, which champions technologies needed to live on and explore the Moon. NASA Tournament Lab, part of STMD’s Prizes and Challenges program, manages the challenge. The program supports the use of public competitions and crowdsourcing as tools to advance NASA R&D and other mission needs.

Learn more about opportunities to participate in your space program via NASA prizes and challenges: www.nasa.gov/solve

Artemis includes sending a suite of new science instruments and technology demonstrations to study the Moon, landing the first woman and next man on the lunar surface by 2024, and establishing a sustained presence by 2028. The agency will leverage its Artemis experience and technologies to prepare for the next giant leap – sending astronauts to Mars. RASSOR is a technology project being developed by Swamp Works at Kennedy that could be used on the Moon or Mars.

SpaceX CRS-20 Prelaunch News Conference

SpaceX CRS-20 mission patch.A prelaunch news conference for SpaceX’s 20th Commercial Resupply Services mission for NASA to the International Space Station is set for 4 p.m. EST today.

Participants include:

  • Joel Montalbano, manager for International Space Station Program
  • Jennifer Buchli, deputy chief scientist for International Space Station Program
  • Hans Koenigsmann, vice president, Build and Flight Reliability at SpaceX
  • Mike McAleenan, launch weather officer, 45th Space Wing, U.S. Air Force

Watch the news conference on NASA Television.

NASA commercial cargo provider SpaceX is targeting 11:50 p.m. EST tonight, March 6, for the launch of resupply mission to the space station.

Follow the launch countdown tonight beginning at 11:30 p.m. on NASA TV and the launch blog. To learn more about the SpaceX CRS-20 mission, visit the mission homepage at http://www.nasa.gov/spacex.

“What’s on Board” Briefing for SpaceX CRS-20 Mission

Airbus workers unpack the Bartolomeo platform in the Space Station Processing Facility high bay at NASA’s Kennedy Space Center in Florida on Jan. 30, 2020.
Airbus workers unpack the Bartolomeo platform in the Space Station Processing Facility high bay at NASA’s Kennedy Space Center in Florida on Jan. 30, 2020. Bartolomeo was manufactured by Airbus Defence and Space. The platform will be delivered to the International Space Station aboard SpaceX’s 20th Commercial Resupply Services (CRS-20) mission for the agency. The platform will attach to the exterior of the space station’s European Columbus Module. Photo credit: NASA/Ben Smegelsky

A briefing about the science payloads for delivery on the SpaceX CRS-20 mission to the International Space Station is set for today at 3 p.m. Tune in to NASA Television. Participants include:

  • Jennifer Buchli, deputy chief scientist for NASA’s International Space Station Program Science Office, who will share an overview of the research being conducted aboard the space station and how it benefits exploration and humanity.
  • Michael Roberts, interim chief scientist for the International Space Station U.S. National Laboratory, who will discuss the lab’s work in advancing science in space, and in developing partnerships that drive industrialization through microgravity research.
  • Bill Corely, director of business development for Airbus Defence and Space, and Bartolomeo Project Manager Andreas Schutte, who will discuss Bartolomeo, a new commercial research platform from ESA (European Space Agency), set to be installed on the exterior of the orbiting laboratory.
  • Chunhui Xu, associate professor of Emory University School of Medicine, and principle investigator for the Generation of Cardiomyocytes from Induced Pluripotent Stem Cells (MVP Cell-03) experiment, who will discuss the study on the generation of specialized heart muscle cells for use in research and clinical applications.
  • Paul Patton, senior manager, front end innovation and regulatory for Delta Faucet, and Garry Marty, principal product engineer for Delta Faucet, who will discuss the Droplet Formation Study, which evaluates water droplet formation and water flow of Delta Faucet’s H2Okinetic showerhead technology. This research in microgravity could help improve technology, creating better performance and improved user experience while conserving water and energy.
  • Aaron Beeler, professor of medicinal chemistry at Boston University, and principal investigator, and co-investigator Matthew Mailloux of Flow Chemistry Platform for Synthetic Reactions on ISS, which will study the effects of microgravity on chemical reactions, as a first step toward on-demand chemical synthesis on the space station.