Flight Readiness Concludes for Boeing’s Orbital Flight Test-2

NASA and Boeing leadership conduct the flight readiness review for Boeing's OFT-2 mission.
The Flight Readiness Review for Boeing’s Orbital Flight Test (OFT-2) mission was held at NASA’s Kennedy Space Center in Florida on July 22. Photo credit: NASA/Kim Shiflett

NASA and Boeing are proceeding with plans for the uncrewed Orbital Flight Test-2 (OFT-2) mission to the International Space Station following a full day of briefings and discussion during a Flight Readiness Review that took place at the agency’s Kennedy Space Center in Florida.

A photo of Kathy Lueders during the flight readiness review for Boeing's uncrewed OFT-2 mission.
Kathy Lueders, NASA associate administrator for Human Exploration and Operations, chaired the Flight Readiness Review for Boeing’s OFT-2 mission. Photo credit: NASA/Kim Shiflett

Launch of the CST-100 Starliner spacecraft on a United Launch Alliance Atlas V rocket is scheduled for 2:53 p.m. EDT Friday, July 30, from Space Launch Complex-41 on Cape Canaveral Space Force Station as part of NASA’s Commercial Crew Program.

OFT-2 will test the end-to-end capabilities of Starliner from launch to docking, atmospheric re-entry, and a desert landing in the western United States. OFT-2 will provide valuable data that will help NASA certify Boeing’s crew transportation system to carry astronauts to and from the space station.

At 6 p.m., NASA and Boeing will hold a flight readiness review media teleconference at Kennedy with the following representatives:

  • Kathryn Lueders, associate administrator, Human Exploration and Operations Mission Directorate at NASA
  • Steve Stich, manager, NASA’s Commercial Crew Program
  • Joel Montalbano, manager, NASA’s International Space Station Program
  • John Vollmer, vice president and program manager, Boeing Commercial Crew Program
  • Norm Knight, director, NASA’s Flight Operations Directorate

The teleconference will be streamed at http://www.nasa.gov/live.

More details about NASA’s Commercial Crew Program can be found by following the commercial crew blog, @commercial_crew and commercial crew on Facebook

Flight Readiness Review Begins for NASA’s Boeing Orbital Flight Test-2

The Flight Readiness Review is underway for Boeing’s Orbital Flight Test (OFT-2) at NASA’s Kennedy Space Center in Florida on July 22.
The Flight Readiness Review is underway for Boeing’s Orbital Flight Test (OFT-2) at NASA’s Kennedy Space Center in Florida on July 22. Photo credit: NASA/Kim Shiflett

NASA and Boeing are holding a Flight Readiness Review (FRR) today at the agency’s Kennedy Space Center in Florida in preparation for the Orbital Flight Test-2 (OFT-2) mission to the International Space Station as part of the agency’s Commercial Crew Program.

NASA Administrator Bill Nelson kicks off the Flight Readiness Review for Boeing’s upcoming OFT-2 mission.
NASA Administrator Bill Nelson kicks off the Flight Readiness Review for Boeing’s upcoming OFT-2 mission. Photo credit: NASA/Kim Shiflett

Teams have gathered to hear presentations from key mission managers as part of an in-depth assessment on the readiness of flight for Boeing’s CST-100 Starliner spacecraft and systems, mission operations, support functions and readiness of the space station program to support Starliner’s mission to the microgravity laboratory.

Kathryn Lueders, associate administrator for NASA’s human exploration and operations, is leading the meeting. The senior Boeing official at the review is John Vollmer, vice president and program manager for Boeing’s Commercial Crew Program. The meeting will conclude with a poll of all members of the review board.

At 6 p.m. or one hour after the readiness review, NASA and Boeing will hold a media teleconference to discuss the review and status to flight with the following participants:

  • Kathryn Lueders, associate administrator, Human Exploration and Operations Mission Directorate at NASA
  • Steve Stich, manager, NASA’s Commercial Crew Program
  • Joel Montalbano, manager, NASA’s International Space Station Program
  • John Vollmer, vice president and program manager, Boeing Commercial Crew Program
  • Norm Knight, director, NASA’s Flight Operations Directorate
NASA astronauts for Boeing’s Crew Flight Test, Commander Barry “Butch” Wilmore, Pilot Nicole Mann, and Joint Ops Commander Mike Fincke addressed the Flight Readiness Review for the uncrewed OFT-2 mission. Their flight currently is targeted for late 2021.
NASA astronauts for Boeing’s Crew Flight Test, Commander Barry “Butch” Wilmore, Pilot Nicole Mann, and Joint Ops Commander Mike Fincke addressed the Flight Readiness Review for the uncrewed OFT-2 mission. Their flight currently is targeted for late 2021. Photo credit: NASA/Kim Shiflett

The teleconference will be streamed at http://www.nasa.gov/live.

Launch of Starliner is targeted at 2:53 p.m. EDT Friday, July 30, on a United Launch Alliance Atlas V rocket from Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida; the spacecraft will rendezvous and dock with the orbiting laboratory about a day later.

The flight test will provide valuable data NASA will review as part of the process to certify Boeing’s crew transportation system is as safe as possible for carrying astronauts to and from the space station.

More details about NASA’s Commercial Crew Program can be found by following the commercial crew blog, @commercial_crew and commercial crew on Facebook.

Space Test Program-3 Launch Update

The launch of a United Launch Alliance Atlas V 551 rocket carrying the Space Test Program-3 (STP-3) mission for the U.S. Space Force’s Space and Missile Systems Center has been delayed to evaluate launch vehicle readiness. A new launch date will be released when it is available. NASA’s Laser Communications Relay Demonstration (LCRD) is a payload on STPSat-6, the primary spacecraft on STP-3, and will demonstrate laser communications technologies from geosynchronous orbit about 22,000 miles above Earth upon launch.

To stay updated about LCRD and laser communications, visit: https://www.nasa.gov/lasercomms.

To learn more about STP-3, visit: www.ulalaunch.com.

SpaceX Crew-2 on Track for Launch April 23, NASA Celebrates Earth Day in Space Today

A SpaceX Falcon 9 rocket with the company's Crew Dragon spacecraft onboard is in view on the launch pad at Launch Complex 39A on Tuesday, April 20, 2021, as preparations continue for the Crew-2 mission at NASA’s Kennedy Space Center in Florida.
A SpaceX Falcon 9 rocket with the company’s Crew Dragon spacecraft onboard is in view on the launch pad at Launch Complex 39A on Tuesday, April 20, 2021, as preparations continue for the Crew-2 mission at NASA’s Kennedy Space Center in Florida. NASA’s SpaceX Crew-2 mission is the second crew rotation mission of the SpaceX Crew Dragon spacecraft and Falcon 9 rocket to the International Space Station as part of the agency’s Commercial Crew Program. NASA astronauts Shane Kimbrough and Megan McArthur, ESA (European Space Agency) astronaut Thomas Pesquet, and Japan Aerospace Exploration Agency (JAXA) astronaut Akihiko Hoshide are scheduled to launch at 5:49 a.m. EDT on Friday, April 23, 2021. Photo Credit: NASA/Joel Kowsky

Launch of NASA’s SpaceX Crew-2 mission with astronauts to the International Space Station is on track for Friday, April 23, at 5:49 a.m. EDT. The SpaceX Falcon 9 rocket with Crew Dragon spacecraft will lift off from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.

NASA astronauts Shane Kimbrough and Megan McArthur, along with JAXA (Japan Aerospace Exploration Agency) astronaut Akihiko Hoshide, and ESA (European Space Agency) astronaut Thomas Pesquet will fly to the International Space Station for a six-month science mission. NASA TV coverage of Crew-2 launch preparations and liftoff will begin at 1:30 a.m. Friday, April 23. The Crew Dragon is scheduled to dock to the space station Saturday, April 24, at approximately 5:10 a.m. EDT.

For an April 23 launch, the U.S. Space Force 45th Weather Squadron continues to predict a 90% chance of favorable weather conditions at the launch pad for liftoff based on Falcon 9 Crew Dragon launch weather criteria. The primary weather concerns for the launch area will be flight through precipitation from isolated, low-topped coastal showers and onshore flow. Conditions continue to improve along the flight path and recovery area for the mission.

Today, Thursday, April 22, is Earth Day. To commemorate this day, NASA is hosting Earth Day in Space. Singer-songwriter Shawn Mendes will join five astronauts living and working aboard the International Space to discuss how we’re all #ConnectedByEarth, asking questions from young people around the world about Earth Day, climate change and how the astronauts study Earth from space.

The event will feature NASA astronaut Mark Vande Hei, who recently arrived to the space station aboard a Soyuz, joining NASA astronauts Mike Hopkins, Victor Glover, Shannon Walker, and Japan Aerospace Exploration Agency astronaut Soichi Noguchi, the Crew-1 team who arrived last November. It will air live on NASA Television, the NASA app, and the agency’s YouTube channel and website at 11 a.m. EDT April 22.

The Crew-1 astronauts are scheduled to depart the space station at 7:05 a.m. Wednesday, April 28. They will participate in their final news conference aboard the microgravity laboratory at 12:30 p.m. EDT Monday, April 26, about their upcoming return to Earth. Media wishing to participate by telephone must call NASA’s Johnson Space Center’s newsroom at 281-483-5111 to RSVP no later than 5 p.m. Friday, April 23. The news conference will air live on NASA Television, the NASA app, and the agency’s website. Those following the briefing on social media may ask questions using #AskNASA.

Crew-1 worked on a number of experiments as part of Expedition 64 to the International Space Station, including tissue chips that mimic the structure and function of human organs to understand the role of microgravity on human health and diseases, and translate those findings to improve human health on Earth. Astronauts also grew radishes in different types of light and soils as part of ongoing efforts to produce food in space and tested a new system to remove heat from spacesuits.

Follow along with launch activities and get more information about the mission at: http://www.nasa.gov/crew-2. Learn more about commercial crew and space station activities by following: @Commercial_Crew@space_station, and @ISS_Research on Twitter as well as the Commercial Crew FacebookISS Facebook and ISS Instagram accounts.

Acting NASA Administrator, Partners Discuss Crew-2 Mission, Now Set for April 23

Frank De Winne, manager, International Space Station Program, ESA (European Space Agency) speaks to members of the media during a press conference with, from left, acting NASA Administrator Steve Jurczyk, Hiroshi Sasaki, vice president and director general of the Japan Aerospace Exploration Agency’s (JAXA) Human Spaceflight Technology Directorate, NASA astronauts Tracy Caldwell Dyson, and Jasmin Moghbeli, and Kennedy Space Center Director Bob Cabana, ahead of the Crew-2 launch, Wednesday, April 21, 2021, at NASA’s Kennedy Space Center in Florida. NASA astronauts Shane Kimbrough and Megan McArthur, ESA astronaut Thomas Pesquet, and JAXA astronaut Akihiko Hoshide are scheduled to launch at 5:49 a.m. EDT on Friday, April 23, from Launch Complex 39A at the Kennedy Space Center.
Frank De Winne, manager, International Space Station Program, ESA (European Space Agency) speaks to members of the media during a press conference with, from left, acting NASA Administrator Steve Jurczyk, Hiroshi Sasaki, vice president and director general of the Japan Aerospace Exploration Agency’s (JAXA) Human Spaceflight Technology Directorate, NASA astronauts Tracy Caldwell Dyson, and Jasmin Moghbeli, and Kennedy Space Center Director Bob Cabana, ahead of the Crew-2 launch. at NASA’s Kennedy Space Center in Florida. NASA astronauts Shane Kimbrough and Megan McArthur, ESA astronaut Thomas Pesquet, and JAXA astronaut Akihiko Hoshide are scheduled to launch at 5:49 a.m. EDT on Friday, April 23, from Launch Complex 39A at the Kennedy Space Center. Photo Credit: NASA/Aubrey Gemignani

With the countdown clock and Launch Pad 39A serving as a backdrop, acting NASA Administrator Steve Jurczyk participated in a briefing for the Crew-2 mission at the agency’s Kennedy Space Center in Florida on Wednesday, April 21, at 8:30 a.m. EDT.

The briefing came after Crew-2’s launch was rescheduled to Friday, April 23, at 5:49 a.m. EDT, because of unfavorable weather conditions along the flight path. Although conditions around the launch site were expected to be favorable for a Thursday, April 22, liftoff, mission teams also must consider conditions along the flight path and recovery area in the unlikely event of a launch escape.

“We’re now scheduled for ‘go’ on Friday and the crew is ready,” said Acting NASA Administrator Steve Jurczyk. “I could not be more proud of the Commercial Crew Program, the SpaceX and NASA teams, and what they’ve been able to do to enable reliable, safe, effective transportation to and from space. We are looking forward to a great launch.”

Crew-2 is the second crew rotation flight of a U.S. commercial spacecraft with astronauts to the space station and the first carrying two international crew members. Mission astronauts Shane Kimbrough and Megan McArthur of NASA, along with JAXA (Japan Aerospace Exploration Agency) astronaut Akihiko Hoshide and ESA (European Space Agency) astronaut Thomas Pesquet, will head to the International Space Station for a six-month science mission in the Crew Dragon spacecraft, which will launch on the SpaceX Falcon 9 rocket from Launch Complex 39A.

“On behalf of JAXA, I’d like to express my gratitude to the launch team,” said Hiroshi Sasaki, vice president and director general, JAXA’s Human Spaceflight Technology Directorate. “Last night, I spoke with Akihiko Hoshide, and he is ready for launch. I am excited that two Japanese astronauts – Akihiko Hoshide and Soichi Noguchi – will meet together at the International Space Station. I’m looking forward to the Crew-2 launch and wishing them great success.”

The crew will conduct science and maintenance during their six-month stay aboard the space station and will return no earlier than Oct. 31. Adding more crew members aboard the microgravity laboratory increases the time available for scientific activities. The November 2020 addition of the Crew-1 astronauts more than doubled crew hours spent on science research and support activities, and Crew-2 will continue the important investigations and technology demonstrations that are preparing for future Artemis missions to the Moon, helping us improve our understanding of Earth’s climate, and improving life on our home planet.

An important scientific focus on this expedition is continuing a series of Tissue Chips in Space studies. Tissue chips are small models of human organs containing multiple cell types that behave much the same as they do in the body. Another important element of Crew-2’s mission is augmenting the station’s solar power system by installing the first pair of six new ISS Roll-out Solar Arrays (iROSA).

“It’s an exciting time for us,” said Frank de Winne, manager, International Space Station Program. “We will have much more time to do research, science, but also technology development that we will need for the future of the Artemis program and for the future exploration of our solar system.”

Crew Dragon will deliver more than 500 pounds of cargo, as well as new science hardware and experiments, including CHIME, a university student-led investigation to study possible causes for suppressed immune response in microgravity.

For an April 23 launch, the U.S. Space Force 45th Weather Squadron predicts a 90% chance of favorable weather conditions at the launch pad for liftoff based on Falcon 9 Crew Dragon launch weather criteria. The primary weather concerns for the launch area will be liftoff winds. Conditions also are expected to improve along the flight path and recovery area for the mission.

NASA TV coverage of Crew-2 launch preparations and liftoff will begin at 1:30 a.m. Friday, April 23. The Crew Dragon is scheduled to dock to the space station Saturday, April 24, at approximately 5:10 a.m. EDT.

Follow along with launch activities and get more information about the mission at: http://www.nasa.gov/crew-2. Learn more about commercial crew and space station activities by following: @Commercial_Crew@space_station, and @ISS_Research on Twitter, as well as the Commercial Crew FacebookISS Facebook, and ISS Instagram accounts.

Fueling Underway For Artemis I Launch

A view of the Interim Cryogenic Propulsion System in the Multi-Payload Processing Facility at NASA's Kennedy Space Center in Florida.
A view of the Interim Cryogenic Propulsion System inside the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida on Feb. 18, 2021. Photo credit: NASA/Glenn Benson

Teams with NASA’s Kennedy Space Center Exploration Ground Systems and primary contractor, Jacobs, are fueling the Orion service module ahead of the Artemis I mission. The spacecraft currently resides in Kennedy’s Multi-Payload Processing Facility alongside the Interim Cryogenic Propulsion System (ICPS), the rocket’s upper stage that will send Orion to the Moon. After servicing, these elements will be integrated with the flight components of the Space Launch System, which are being assembled in the Vehicle Assembly Building.

Technicians began loading Orion’s service module with oxidizer, which will power the Orbital Maneuvering System main engine and auxiliary thrusters on the European-built service module ahead of propellant loading. These auxiliary thrusters stabilize and control the rotation of the spacecraft after it separates from the ICPS. Once the service module is loaded, teams will fuel the crew module to support thermal control of the internal avionics and the reaction control system. These 12 thrusters steady the crew module and control its rotation after separation from the service module.

Once Orion servicing is complete, teams will fill the ICPS. This liquid oxygen/liquid hydrogen-based system will push the spacecraft beyond the Moon for the test flight under the agency’s Artemis program. In several weeks, when fueling is complete, Orion will move to the center’s Launch Abort System Facility to integrate its launch abort system, and the ICPS will move to the Vehicle Assembly Building to be stacked atop the mobile launcher.

Delta II Added to Historic Line-up at Kennedy Space Center Visitor Complex Rocket Garden

A ribbon-cutting ceremony welcomes the last United Launch Alliance Delta II rocket to the lineup of historic launch vehicles in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida, on March 23, 2021. Cutting the ribbon, from left are Kennedy Space Center Director Bob Cabana, Tim Dunn, launch director, Launch Services Program, and Therrin Protze, chief operating officer, Delaware North/KSCVC.
A ribbon-cutting ceremony welcomes the last United Launch Alliance Delta II rocket to the lineup of historic launch vehicles in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida, on March 23, 2021. Cutting the ribbon, from left are Kennedy Space Center Director Bob Cabana, Tim Dunn, launch director, Launch Services Program, and Therrin Protze, chief operating officer, Delaware North/KSCVC. Photo credit: NASA/Kim Shiflett

The last United Launch Alliance (ULA) Delta II rocket became a permanent resident of the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida on March 23, 2021. Representatives from the Visitor Complex, ULA, Kennedy Space Center, NASA’s Launch Services Program, and the 45th Space Wing gathered for a ribbon cutting to commemorate the addition of the rocket to the line-up.

During a ribbon-cutting ceremony, the last United Launch Alliance Delta II rocket joins the lineup of historic launch vehicles in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida, on March 23, 2021.
During a ribbon-cutting ceremony, the last United Launch Alliance Delta II rocket joins the lineup of historic launch vehicles in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida, on March 23, 2021. Photo credit: NASA/Kim Shiflett

“It’s great having this ULA Delta II take its place among the other historic vehicles in our Rocket Garden,” said Kennedy Space Center Director Bob Cabana. “The Delta II launched so many critical NASA science missions throughout our solar system as well as to planet Earth, and now it begins its second career on a mission of inspiration for all our future rocket scientists and engineers visiting the Kennedy Space Center.”

Delta II took its place among iconic giants, joining an original Delta, Mercury-Redstone, Mercury-Atlas, Gemini-Titan, the Junos, Atlas-Agena and Saturn 1B.

Following the Delta II’s final mission in 2018, ULA selected Kennedy’s Visitor Complex to receive a remaining vehicle for an outdoor display to inspire current and future generations to learn about the rocket’s history.

“Today is a historic day for our ULA team. We are excited to honor the legacy of this rocket that was so instrumental in delivering critical missions for NASA, the Department of Defense and commercial customers,” said Ron Fortson, director and general manager of United Launch Alliance, “Today we honor not only the Delta II’s historical impact, but also the men and women who designed, built, and launched it for nearly three decades.”

For nearly 30 years, the Delta II was the industry workhorse for NASA and civilian scientists, the U.S. military, and commercial clients. The Delta II launched more than 230 satellites on 155 flights to deploy the Global Positioning System (GPS), explore the solar system, and serve the medium-class commercial space launch market. Delta II soared into space from both coasts of the United States, launching from two side-by-side pads at Cape Canaveral’s Space Launch Complex (SLC)-17 in Florida, and the SLC-2 at Vandenberg Air Force Base in California. NASA’s Launch Services Program launched the ICESat-2 spacecraft on the final Delta II launch on Sept. 15, 2018, from Vandenberg.

“I was excited to see Delta II in the Rocket Garden against a beautiful blue sky. I am so thankful for the ULA/Delaware North collaboration that made this display possible,” said Tim Dunn, Launch Services Program launch director. “When I think of Delta II, I think of the launch team, the engineers, analysts, and technicians who contributed to this rocket’s unprecedented record of success, consistent performance, and its appropriate nickname, ‘The Workhorse.’ I believe the success of this rocket has left a huge ripple effect on the launch systems we have today.”

McDonnell Douglas created the rocket in the late 1980s to fulfill the U.S. Air Force’s need for a launch vehicle to carry the GPS first generation of operational satellites into space and create a worldwide precision navigation network.

Kennedy Scientist Journeys to End of Earth for Plant Research: Astrobotanist Log 1

Neumayer III Station in Antarctica.
Neumayer III Station in Antarctica. Photo credit: DLR/NASA/Jess Bunchek

After training for months in Germany, Jess Bunchek, a plant scientist with NASA’s Kennedy Space Center, departed Dec. 20, 2020, for the German Neumayer III Station in Antarctica, operated by the Alfred Wegner Institute (AWI). Working at the EDEN ISS greenhouse managed by the German Aerospace Center (DLR), Bunchek will research growing food crops in a remote, harsh setting, similar to what astronauts experience in space. Here is her account of the journey to EDEN ISS.

The 2021 overwintering team in front of Polarstern upon arrival in Antarctica.
The 2021 overwintering team in front of Polarstern upon arrival in Antarctica. Back row L-R: mechanical engineer Florian Koch, chef Tanguy Doron, station leader and surgeon Peter Jonczyk, meteorologist Paul Ockenfuss, electrical engineer Markus Baden, geophysicist Lorenz Marten. Front row L-R: atmospheric chemist Linda Ort, IT and radio specialist Theresa Thoma, geophysicist Timo Dornhoefer, agronomist/astrobotanist Jess Bunchek. Photo credit: AWI/Tim Heitland

In a typical year, you can reach the Neumayer III Station in Antarctica by air, but as we all know, the past year has been anything but typical. With countries restricting travelers and flights being cancelled, the institute that runs Neumayer came up with an alternative: go by ship. The icebreaker RV Polarstern, German for “polar star,” already travels annually from Germany to Neumayer to resupply the station, so adding a few passengers to this year’s transit was a logical and COVID-safe solution for AWI.

Icebreaker RV Polarstern that transported the team from Germany to Antarctica on a non-stop trip.
Icebreaker RV Polarstern that transported the team from Germany to Antarctica on a non-stop trip. Credit: DLR/NASA/Jess Bunchek

Our month-long voyage started with a storm in the English Channel and Bay of Biscay. The ship cut through 16-foot (5-meter) waves in spectacular fashion, although inside the ship, many of us rookies looked a bit, well, green from seasickness. Fortunately, we found ourselves in calmer seas with beautiful weather by the time we passed the Grand Canary Islands, which gave us the chance to fully appreciate the purpose and privilege of our voyage. That we are still able to overwinter while the world has come to a halt due to the pandemic has not been lost on us in the slightest.

The temperature quickly dropped as we approached the Antarctic Circle at 60 degrees south latitude, and soon we found ourselves in polar day where the Sun does not set, and sea ice is common. The latter was no problem for Polarstern, which is designed to navigate such an environment. In the Antarctic, orcas are the greatest predatorial threat to seals and penguins, which prefer to stay on the ice as we pass by than risk diving into the water. On multiple occasions, the large ship had to navigate around sunbathing seals.

We awoke early one morning parked next to the Ekstrøm Ice Shelf. Welcome to Antarctica! The next step was to unload Polarstern of passengers and cargo and move to Neumayer, still 12 miles (20 km) away. In the absence of buildings, trees, or mountains, our landmarks were now the colossal icebergs in nearby Atka Bay.

Navigating polar regions goes beyond the design of an icebreaker ship. In thick sea ice, helicopters are crucial for surveying the surrounding area and determining the best route for Polarstern. They also can quickly run temperature-critical and fragile supplies – such as seeds for EDEN ISS – from the ship to Neumayer while checking the long-term condition of the shelf ice.

However, all other transit is done on the ice. Snowmobiles are the ideal option for shorter, lighter trips, while tracked plows are better for heavy-duty jobs such as hauling, plowing, or longer travel.

Without further ado, I present AWI’s 41st overwintering team. Our 10-person crew consists of mechanic and electrical technician support, a cook, an IT and radio specialist, a surgeon, and scientists in the areas of geophysics, atmospheric chemistry, meteorology, and me, an agronomist and astrobotanist. Although my area of research focuses on supplying fresh crops to the crew while testing capabilities for space crop production, I would be remiss to not mention the role that marine and polar science play in climate change research. Traveling the length of the Atlantic Ocean reinforced a seemingly obvious but noteworthy theme: Our oceans and poles are humbling and marvelous. From the dark hues of icy, choppy waters to the velvet-smooth waves and warm, vibrant blue-greens near the Equator, to the frozen shelf ice that the 10 of us will call home for the next year, our Earth sure is a beautiful planet.

Now, we’re preparing the EDEN ISS greenhouse for the upcoming season, and I will post again soon.

Click here to view the story and additional photos on Instagram.

SLS Rocket Stage and Orion Share Space at Kennedy ahead of Artemis I

The ICPS is inside the Multi-Payload Process Facility at Kennedy Space Center on Feb. 18, 2021.
The Space Launch System (SLS) rocket’s interim cryogenic propulsion stage (ICPS) moved into the Multi-Payload Processing Facility February 18, 2021, at NASA’s Kennedy Space Center in Florida for the Artemis I mission. Photo credit: NASA/Glenn Benson

The Space Launch System (SLS) rocket’s interim cryogenic propulsion stage (ICPS) moved into the Multi-Payload Processing Facility February 18, 2021, at NASA’s Kennedy Space Center in Florida alongside one of its flight partners for the Artemis I mission, the Orion spacecraft. Both pieces of hardware will undergo fueling and servicing in the facility ahead of launch by teams from NASA’s Exploration Ground Systems and their primary contractor, Jacobs Technology. The rocket stage and Orion will remain close during their journey to space.

The ICPS is moved into the Multi-Payload Process Facility on Feb. 18, 2021 at Kennedy Space Center.
The interim cryogenic propulsion stage is in view inside the Multi-Payload Processing Facility on Feb. 18, 2021, at Kennedy Space Center. Photo credit: NASA/Glenn Benson

Built by United Launch Alliance and Boeing, the ICPS will be positioned above the core stage and will provide the power needed to give Orion the big push it needs to break out of Earth orbit on a precise trajectory toward the Moon during Artemis I.

This is the first time since the shuttle program that two pieces of flight hardware have been processed inside this facility at the same time. Once final checkouts are complete, the ICPS and Orion will part ways on the ground and be reunited in the Vehicle Assembly Building for integration onto the SLS rocket.

Artemis I will be an integrated flight test of the SLS rocket and Orion spacecraft ahead of the crewed flights to the Moon. Under the Artemis program, NASA will land the first woman and the next man on the lunar surface and establish a sustainable presence at the Moon to prepare for human missions to Mars.

View additional photos here.

NASA “Meatball” Insignia and ESA Logo Added to Artemis I Fairings

The NASA and ESA insignias are in view on the Orion spacecraft adapter jettison fairings in the MPPF at Kennedy Space Center.
Artemis I extends NASA and ESA’s (European Space Agency) strong international partnership beyond low-Earth orbit to lunar exploration with Orion on Artemis missions, as the ESA logo joins the historic NASA “meatball” insignia on the Artemis I spacecraft adapter jettison fairing panels that protect the service module during launch. Photo credit: NASA/Glenn Benson

NASA’s Artemis I Orion spacecraft is being outfitted with additional artwork as technicians began installing the logo for ESA (European Space Agency). ESA provided the European-built service module, which provides power and propulsion for the Orion spacecraft, and will also provide water and air for astronauts on future missions.

The NASA and ESA insignias are in view on the Orion spacecraft adapter jettison fairings in the MPPF at Kennedy Space Center.
The ESA (European Space Agency) logo joins the historic NASA “meatball” insignia on the Artemis I spacecraft adapter jettison fairing panels that protect the service module during launch. Orion is currently stationed at NASA’s Kennedy Space Center in the Multi-Payload Processing Facility. Photo credit: NASA/Glenn Benson

Artemis I extends NASA and ESA’s strong international partnership beyond low-Earth orbit to lunar exploration with Orion on Artemis missions. The ESA logo joins the historic NASA “meatball” insignia on the Artemis I spacecraft adapter jettison fairing panels that protect the service module during launch.

Orion is currently stationed at NASA’s Kennedy Space Center in the Multi-Payload Processing Facility, where it will undergo fueling and servicing by NASA’s Exploration Ground Systems and Jacobs Technology teams in preparation for the upcoming flight test with the Space Launch System rocket under the agency’s Artemis program.