Kennedy Announces Winner for 2020 Best of KSC Software Competition

Members of the development team that redesigned the SpecsIntact software at Kennedy Space Center.
The development team that redesigned the SpecsIntact software at NASA’s Kennedy Space Center in Florida is made up of NASA and contractor employees from across the center. In the front row, from left is Candy Thomas, Tammy Edelman, and Martha Muller. Middle row, from left is Carly Helton, Marcelo Dasilva, Eric Lockshine, Cheryl Fitz-Simon, and Maria Zamora. Back row, from left is Jim Whitehead, Pierre Gravelat, Stephan Whytsell. Members of the team not pictured are Dan Evans, Belle Graziano, Eric Hall, Lelia Hancock, Justin Junod, John Merrick, Jim Morrison, Julie Nicely, Phil Nicholson, Gerard Sczepura, Daniel Smith, and Jeanne Yow. Photo credit: NASA

NASA’s Kennedy Space Center, a premier multi-user spaceport, uses research and innovation to support the future of space exploration. Kennedy’s annual Best of KSC Software competition is an employee-driven contest that fosters creativity and enables new discoveries to improve the quality of life on Earth and the exploration of our solar system and beyond.

Close-up view of the flame trench and flame deflector and Launch Pad 39B.
A close-up view of the flame trench and flame deflector at Launch Pad 39B at NASA’s Kennedy Space Center in Florida on July 26, 2018. The launch pad has undergone upgrades and modifications to accommodate NASA’s Space Launch System and Orion spacecraft for Artemis I and other deep space missions. New heat-resistant bricks have been installed on the walls and a new flame deflector is in place. Photo Credit: NASA/Cory Huston

The 2020 winner of Best of KSC Software was SpecsIntact 5. The development team, made up of NASA employees and contractors from across the center, earned this distinction by redesigning the SpecsIntact software. This automated specification management system is used in construction projects worldwide. The upgraded system reduces the time and cost required to produce facility specifications with an easy and intuitive interface that assists with quality control.

The team at Kennedy Space Center manages the SpecsIntact system, which also is used by many federal and state agencies, including the U.S. military. At Kennedy, NASA used previous versions of the software for the design, construction, and upgrades of several facilities, including modification of the spaceport’s headquarters building and upgrades to the main flame deflector in the flame trench at Launch Pad 39B.

A view looking up at the 10 levels of work platforms in High Bay 3 inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The work platforms will surround and provide access for service and processing of NASA’s Space Launch System rocket and Orion spacecraft. Photo credit: NASA/Glenn Benson

The software was also instrumental to the renovation of High Bay 3 inside the Vehicle Assembly Building in preparation for NASA’s first integrated launch of the Space Launch System rocket and Orion spacecraft as part of the agency’s Artemis program.

The SpecsIntact system has evolved significantly since first conceived at NASA in 1965 to support applications across both the government and private sector. NASA’s Technology Transfer Program ensures that innovations developed for exploration and discovery are broadly available to the public, maximizing the benefit to the nation. The program enables U.S. industry efforts to find new applications for NASA technologies on Earth and for human space exploration, including deep space missions to the Moon and Mars.

NASA “Meatball” Insignia and ESA Logo Added to Artemis I Fairings

The NASA and ESA insignias are in view on the Orion spacecraft adapter jettison fairings in the MPPF at Kennedy Space Center.
Artemis I extends NASA and ESA’s (European Space Agency) strong international partnership beyond low-Earth orbit to lunar exploration with Orion on Artemis missions, as the ESA logo joins the historic NASA “meatball” insignia on the Artemis I spacecraft adapter jettison fairing panels that protect the service module during launch. Photo credit: NASA/Glenn Benson

NASA’s Artemis I Orion spacecraft is being outfitted with additional artwork as technicians began installing the logo for ESA (European Space Agency). ESA provided the European-built service module, which provides power and propulsion for the Orion spacecraft, and will also provide water and air for astronauts on future missions.

The NASA and ESA insignias are in view on the Orion spacecraft adapter jettison fairings in the MPPF at Kennedy Space Center.
The ESA (European Space Agency) logo joins the historic NASA “meatball” insignia on the Artemis I spacecraft adapter jettison fairing panels that protect the service module during launch. Orion is currently stationed at NASA’s Kennedy Space Center in the Multi-Payload Processing Facility. Photo credit: NASA/Glenn Benson

Artemis I extends NASA and ESA’s strong international partnership beyond low-Earth orbit to lunar exploration with Orion on Artemis missions. The ESA logo joins the historic NASA “meatball” insignia on the Artemis I spacecraft adapter jettison fairing panels that protect the service module during launch.

Orion is currently stationed at NASA’s Kennedy Space Center in the Multi-Payload Processing Facility, where it will undergo fueling and servicing by NASA’s Exploration Ground Systems and Jacobs Technology teams in preparation for the upcoming flight test with the Space Launch System rocket under the agency’s Artemis program.

Artemis I Boosters Take Shape

The Space Launch System solid rocket boosters are being stacked on the mobile launcher inside the Vehicle Assembly Building.
The twin solid rocket boosters for NASA’s Space Launch System (SLS) are being stacked on the mobile launcher inside the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida. The boosters will power SLS on the Artemis I mission. Photo credit: NASA/Kim Shiflett

Booster stacking continues! The second to last set of segments for NASA’s Space Launch System (SLS) solid rocket boosters were placed on the mobile launcher inside the Vehicle Assembly Building at NASA’s Kennedy Space Center. Engineers with Exploration Ground Systems and Jacobs transported the segments from the Rotation, Processing and Surge Facility, where they have been since June. Once fully stacked, each booster will stand nearly 17 stories tall. The twin boosters will power the first flight of the agency’s new deep space rocket during the Artemis I mission. This uncrewed flight later this year will test the SLS rocket and Orion spacecraft as an integrated system ahead of crewed flights.

NASA’s Space Launch System Receives Another Major Boost

SLS solid rocket boosters
The solid rocket boosters will power the first flight of NASA’s Space Launch System rocket on the Artemis I mission. Photo credit: NASA/Kim Shiflett

The third of five sets of solid rocket boosters for NASA’s Space Launch System (SLS) rocket were placed on the mobile launcher inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The middle segments, painted with the iconic “worm” logo, were lifted onto the launcher by Jacobs and Exploration Ground Systems engineers using the VAB’s 325-ton crane.

The twin boosters will power the first flight of the agency’s new deep space rocket on its first Artemis Program mission. Artemis I will be an uncrewed flight to test the SLS rocket and Orion spacecraft as an integrated system ahead of crewed flights.

Artemis I Boosters Continue to Stack Up

In High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the right-hand center aft booster segment for Artemis I is stacked on the mobile launcher for the Space Launch System (SLS) on Jan. 7, 2021.
In High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the right-hand center aft booster segment for Artemis I is stacked on the mobile launcher for the Space Launch System (SLS) on Jan. 7, 2021. Photo credit: NASA/Kim Shiflett

Booster stacking for NASA’s Space Launch System (SLS) rocket is continuing at NASA’s Kennedy Space Center. The second of five segments for the SLS rocket boosters have been placed on the mobile launcher in preparation for the launch of Artemis I later this year. This marks four out of 10 solid rocket booster segments being lifted via crane and placed on the launcher, the structure used to process, assemble, and launch SLS. The twin boosters will power the first flight of SLS, the agency’s new deep space rocket for Artemis I. This uncrewed flight will test the SLS and Orion spacecraft as an integrated system ahead of crewed flights to the Moon as part of the Artemis program.

Artemis Instrument Ready for Extreme Moon Temperatures

Engineers and technicians at NASA’s Kennedy Space Center in Florida install the radiator for the Mass Spectrometer Observing Lunar Operations (MSolo) instrument inside the Space Station Processing Facility on Sept. 25, 2020. Photo credit: NASA/Glenn Benson

A versatile instrument designed to help analyze the chemical makeup of lunar landing sites and study water on the Moon as part of the Artemis program has completed an important step in its final assembly.

Teams working on the Mass Spectrometer Observing Lunar Operations, or MSolo, at NASA’s Kennedy Space Center in Florida installed the radiator – a critical component that will keep the instrument’s temperature stable in the extreme heat and cold it will encounter on the Moon.

MSolo is a commercial off-the-shelf mass spectrometer modified to work in space. NASA will use MSolo to identify molecules on the surface of the Moon. Multiple MSolo instruments are destined for the Moon via the help of NASA’s commercial partners, landing scientific instruments and technology demonstrations on the lunar surface as part of the Commercial Lunar Payload Services (CLPS) initiative.

NASA has scheduled MSolo instruments to launch on future robotic missions starting in 2021 at Lacus Mortis, a large crater on the near side of the Moon. MSolo is a key component of the Polar Resources Ice Mining Experiment, or PRIME-1, instrument suite that will use a drill to harvest ice just below the lunar surface in 2022. Later, the technology will be one of three instruments on board NASA’s water-hunting Volatiles Investigating Polar Exploration Rover, VIPER, scheduled to launch to the Moon’s South Pole in late 2023.

On VIPER, the MSolo instrument will help evaluate subsurface soil cuttings brought up by a 3-foot drill in search of water ice and other volatiles that future missions could use as resources. The mission will create the most detailed view of the Moon’s water to date – helping to pave the way for the lunar surface missions with crew beginning in 2024.