NASA Updates Astronaut Assignments for Boeing Starliner Test Flight

United Launch Alliance Atlas V rocket with Boeing's CST-100 Starliner
NASA astronauts Suni Williams, left, Barry “Butch” Wilmore, center, and Mike Fincke, right, watch as a United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft aboard is rolled out of the Vertical Integration Facility to the launch pad at Space Launch Complex 41 Wednesday, May 18, 2022, at Cape Canaveral Space Force Station in Florida, ahead of the Orbital Flight Test-2 (OFT-2) mission. Photo credit: NASA/Joel Kowsky

NASA will fly two astronaut test pilots aboard the agency’s Boeing Crew Flight Test (CFT) mission to the International Space Station, where they will live and work off the Earth for about two weeks.

CFT commander Barry “Butch” Wilmore, whom NASA assigned to the prime crew in October 2020, will join NASA astronaut Suni Williams, who will serve as pilot. Williams previously served as the backup test pilot for CFT while assigned as commander of NASA’s Boeing Starliner-1 mission, Starliner’s first post-certification mission. As CFT pilot, Williams takes the place of NASA astronaut Nicole Mann, originally assigned to the mission in 2018. NASA reassigned Mann to the agency’s SpaceX Crew-5 mission in 2021.

NASA astronaut Mike Fincke, whom the agency previously assigned as the Joint Operations Commander for CFT, will now train as the backup spacecraft test pilot and remains eligible for assignment to a future mission. Fincke’s unique expertise will continue to benefit the team as he retains his position as flight test lead, filling a vital role in Starliner certification.

Click here to read the complete release.

NASA to Purchase Additional Commercial Crew Missions

NASA insignia.

NASA intends to issue a sole source modification to SpaceX to acquire five additional crewed flights to the International Space Station as part of its Commercial Crew Transportation Capabilities (CCtCap) contract. The additional crew flights will allow NASA to maintain an uninterrupted U.S. capability for human access to the space station with two unique commercial crew industry partners.

In December 2021, NASA announced the extension of the International Space Station to 2030. With this extension, there is a need for additional crew rotation missions to sustain a safe and sustainable flight cadence throughout the remainder of the space station’s planned operations.

“Boeing’s Orbital Flight Test-2 went very well and we hope to be able to certify the Starliner system in the near future. However, we will need additional missions from SpaceX to implement our strategy of having each commercial provider flying alternating missions once per year,” said Phil McAllister, director, commercial space at NASA. “Our goal has always been to have multiple providers for crewed transportation to the space station. SpaceX has been reliably flying two NASA crewed missions per year, and now we must backfill those flights to help safely meet the agency’s long-term needs.”

NASA anticipates a potential need to use any additional SpaceX flights as early as 2026 to ensure dissimilar redundancy, maintain safe space station operations, and allow each company to work through any unforeseen issues that could arise as private industry builds operational experience with these new systems.

“The recent success of Boeing’s uncrewed flight test is helping to solidify NASA’s long-term goals,” said Steve Stich, manager, NASA’s Commercial Crew Program. “It’s critical we complete Starliner’s development without undue schedule pressure while working to position both Boeing and SpaceX for sustainable operations in the years ahead.”

SpaceX is currently NASA’s only certified commercial crew transportation provider. The company will fly its sixth rotational mission for NASA in the spring of 2023.

In October 2021, NASA issued a request for information from American industry capable of providing safe, reliable, and cost-effective human space transportation services to and from the International Space Station to ensure a continuous human presence aboard the microgravity laboratory. In February 2022, NASA awarded a firm fixed-price, indefinite-delivery/indefinite-quantity contract modification for the Crew-7, Crew-8, and Crew-9 missions to SpaceX.

After a thorough review of the long-term capabilities and responses from American industry, NASA’s assessment is that the SpaceX crew transportation system is the only one currently certified to maintain crewed flight to the space station while helping to ensure redundant and backup capabilities through 2030.

The current sole source modification does not preclude NASA from seeking additional contract modifications in the future for additional transportation services as needed.

In 2014, NASA awarded the CCtCap contracts to Boeing and SpaceX through a public-private partnership as part of the agency’s Commercial Crew Program. Under CCtCap, NASA certifies that a provider’s space transportation system meets the agency’s requirements prior to flying missions with astronauts. After years of development, commercial crew systems have achieved or are nearing operational readiness for regular crewed missions, including providing a lifeboat capability, to the space station.

 

Weather Forecast Improves for Today’s OFT-2 Launch

Boeing OFT-2 mission
A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft aboard is seen on the launch pad Wednesday, May 18, 2022, at Cape Canaveral Space Force Station in Florida. Liftoff of the Orbital Flight Test-2 mission, from Space Launch Complex-41, is targeted for today at 6:54 p.m. EDT. Photo credit: NASA/Joel Kowsky

Meteorologists with the U.S. Space Force 45th Weather Squadron now predict an 80% chance of favorable weather for today’s uncrewed launch of NASA’s Boeing Orbital Flight Test-2 (OFT-2) to the International Space Station. Liftoff is scheduled for 6:54 p.m. EDT from Cape Canaveral Space Force Station in Florida.

The primary weather concerns for launch day are the cumulus and anvil cloud rules violations during the instantaneous launch window.

Boeing’s CST-100 Starliner spacecraft, atop a United Launch Alliance Atlas V rocket, will lift off from Space Launch Complex-41. Live launch coverage begins at 6 p.m. EDT on NASA TV, the NASA app, and the agency’s website.

Starliner Joins Atlas V at Space Launch Complex-41

Boeing's CST-100 Starliner
Boeing’s CST-100 Starliner spacecraft rolls out from the company’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on May 4, 2022, on its way to Space Launch Complex-41 at Cape Canaveral Space Force Station. Photo credit: NASA/Glenn Benson

On Wednesday, May 4, Boeing’s CST-100 Starliner was joined with the rocket that will launch the spacecraft on its way to the International Space Station on an uncrewed flight test for NASA’s Commercial Crew Program.

During the operation, Starliner rolled out of the Commercial Crew and Cargo Processing Facility (C3PF) at NASA’s Kennedy Space Center in Florida and made its way to Space Launch Complex-41 (SLC-41) at Cape Canaveral Space Force Station in preparation for the company’s second uncrewed Orbital Flight Test (OFT-2)

CST-100 Starliner and Atlas V rocket
United Launch Alliance’s Atlas V rocket and Boeing’s CST-100 Starliner spacecraft are fully assembled in preparation for an integrated systems test. Photo credit: United Launch Alliance

Starliner was raised and carefully placed onto the rocket and now is fully assembled and ready for an integrated systems test, a tip-to-tail electrical check of the 172-foot-tall Atlas V and Starliner stack.

OFT-2 is scheduled to launch Thursday, May 19, to demonstrate the system’s human transportation capabilities.

About 24 hours after launch, Starliner will rendezvous and dock to the space station and then return to Earth five to 10 days later. The test is the last flight before the Starliner system launches American astronauts on the Crew Flight Test (CFT) to the microgravity laboratory – the spacecraft’s first flight test with crew on board. Potential launch windows for CFT are under review and will be determined after a safe and successful OFT-2.

More details about the mission and NASA’s commercial crew program can be found by following the commercial crew blog@commercial_crew on Twitter, and commercial crew on Facebook.

Media Invited to Joint Teleconference for Boeing’s Orbital Flight Test-2

Starliner
A new service module was mated to a Boeing CST-100 Starliner crew module to form a complete spacecraft on March 12, 2022, in Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida. Starliner will launch on a United Launch Alliance Atlas V rocket for Boeing’s second uncrewed Orbital Flight Test-2 (OFT-2) for NASA’s Commercial Crew Program. Photo credit: Boeing

NASA and Boeing will hold a joint media teleconference at noon EDT on Tuesday, May 3, to discuss the agency’s Boeing Orbital Flight Test (OFT-2) mission and provide an update on spacecraft readiness.

The teleconference includes the following participants:

  • Kathryn Lueders, associate administrator, Space Operations Mission Directorate, NASA Headquarters
  • Steve Stich, manager, Commercial Crew Program, NASA’s Kennedy Space Center in Florida
  • Joel Montalbano, manager, International Space Station Program, NASA’s Johnson Space Center in Houston
  • Michelle Parker, vice president and deputy general manager, Space and Launch, Boeing
  • Mark Nappi, vice president and program manager, CST-100 Starliner, Boeing

OFT-2 is scheduled to launch on Thursday, May 19, from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida. Boeing’s uncrewed CST-100 Starliner will launch atop a United Launch Alliance Atlas V rocket for its flight test to the International Space Station as part of NASA’s Commercial Crew Program.

Starliner is expected to arrive at the space station for docking about 24 hours later with more than 500 pounds of NASA cargo and crew supplies. After a successful docking, Starliner will spend five to 10 days aboard the orbiting laboratory before returning to Earth in the western United States. The spacecraft will return with nearly 600 pounds of cargo, including reusable Nitrogen Oxygen Recharge System (NORS) tanks that provide breathable air to station crew members.

Media wishing to participate in the OFT-2 mission overview news teleconference must RSVP by 11 a.m., Tuesday, May 3, by emailing the Kennedy newsroom at ksc-newsroom@mail.nasa.gov.

More details about the mission and NASA’s commercial crew program can be found by following the commercial crew blog, @commercial_crew and commercial crew on Facebook.

NASA, Boeing Prepare to Replace Starliner Service Modules Ahead of Upcoming Orbital Flight Test-2

Starliner technicians work on the Orbital Flight Test-2 spacecraft in the high bay of Boeing's Commercial Crew and Cargo Processing Facility at NASA's Kennedy Space Center in Florida on Jan. 13, 2022.
Starliner technicians work on the Orbital Flight Test-2 spacecraft in the high bay of Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on Jan. 13, 2022.

NASA and Boeing continue making progress toward the agency’s upcoming Starliner Orbital Flight Test-2 (OFT-2) mission to the International Space Station as part of NASA’s Commercial Crew Program.

Teams recently completed offloading fuel from the OFT-2 spacecraft inside Starliner’s production factory at NASA’s Kennedy Space Center in Florida in preparation for separating and replacing the current service module (SM2) from the crew module.

“The Starliner team and successful completion of the spacecraft’s development phase are critical to sustaining International Space Station operations through 2030,” said Steve Stich, manager, NASA Commercial Crew Program. “The team’s dedication to developing effective remedies and corrective action after our first OFT-2 launch attempt demonstrates their continued commitment to safely flying NASA crews for years to come.”

In December, Boeing decided to move up service modules currently in production for its upcoming uncrewed and crewed flight tests. The service module originally planned for the Crew Flight Test (CFT) is now being used for OFT-2, and the service module originally planned for Starliner’s first post-certification mission, Starliner-1, now will  be used for CFT.

With fuel offload complete, the spacecraft was moved out of the hazardous processing area and into the production factory high bay.

“Because this is not an operation that we normally perform, our team took the time to fully coordinate and assess the proper spacecraft and ground support equipment configurations, and then execute to plan to ensure the safety of our team,” said John Vollmer, vice president and program manager, Boeing’s Commercial Crew Program.

Once separated in the coming weeks from the OFT-2 crew module, SM2 will be sent to NASA’s White Sands Test Facility in New Mexico for additional testing related to the issue affecting the spacecraft’s oxidizer isolation valves.

The investigation into the valve issue continues to substantiate that the most probable cause is interaction of moisture with nitrogen tetroxide that permeates through the Teflon seal in the valve, leading to corrosion. Testing continues to fully understand how this occurrence affects the valves in various environments.

Tests include environmental seal evaluation and exposing valves, in a controlled setting, to temperatures and conditions similar to those the spacecraft experienced prior to the planned launch of OFT-2. The results of these tests will help in the ongoing development of remediation efforts to prevent similar issues on future service modules.

For example, the team designed a purging system that will be integrated into the spacecraft to protect the valves from potential exposure to moisture at the factory, launch complex, and launch pad.

Progress also continues with production of the new service module (SM4) that will go onto the OFT-2 crew module. That service module was recently moved from the low bay production area to the factory’s hazardous processing area for high pressure leak testing. Remaining tasks before mating this service module with the OFT-2 crew module include acceptance testing, final wire harness mating, installation of solar array panels, and final closeouts.

NASA and Boeing continue to work toward an opening in United Launch Alliance’s launch window availability in May for OFT-2. An actual launch date will be determined closer to spacecraft readiness, and with consideration of Eastern Range and International Space Station availability. Potential launch windows for CFT are under review and will be determined after a safe and successful OFT-2.

More details about the mission and NASA’s commercial crew program can be found by following the commercial crew blog, @commercial_crew and commercial crew on Facebook.

NASA, Boeing Update Starliner Orbital Flight Test-2 Status

Starliner
The Boeing CST-100 Starliner spacecraft to be flown on Orbital Flight Test-2 (OFT-2) is seen in the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on July 12, 2021. Part of the agency’s Commercial Crew Program, OFT-2 is a critical developmental milestone on the company’s path to fly crew missions for NASA. Photo credit: Boeing

Editor’s note: This blog was updated Oct. 8 to reflect that the team is working toward launch opportunities in the first half of 2022 for Orbital Flight Test-2.

The NASA, Boeing team continues to make progress on the investigation of the oxidizer isolation valve issue on the Starliner service module propulsion system that was discovered ahead of the planned uncrewed Orbital Flight Test-2 (OFT-2) mission to the International Space Station in August.

“I am proud of the work our integrated teams are doing,” said Steve Stich, manager of the Commercial Crew Program at NASA’s Kennedy Space Center in Florida. “This is a complex issue involving hazardous commodities and intricate areas of the spacecraft that are not easily accessed. It has taken a methodical approach and sound engineering to effectively examine.”

Boeing has demonstrated success in valve functionality using localized heating and electrical charging techniques. Troubleshooting on the pad, at the launch complex, and inside the Starliner production factory at Kennedy Space Center has resulted in movement of all but one of the original stuck valves. That valve has not been moved intentionally to preserve forensics for direct root cause analysis.

Most items on the fault tree have been dispositioned by the team including causes related to avionics, flight software and wiring. Boeing has identified a most probable cause related to oxidizer and moisture interactions, and although some verification work remains underway, our confidence is high enough that we are commencing corrective and preventive actions. Additional spacecraft and component testing will be conducted in the coming weeks to further explore contributing factors and necessary system remediation before flight.

Boeing completed a partial disassembly of three of the affected Orbital Maneuvering and Attitude Control (OMAC) thruster valves last month and plans to remove three valves from the OFT-2 spacecraft in the coming weeks for further inspection. The team also is evaluating additional testing to repeat the initial valve failures.

Boeing has identified several paths forward depending on the outcome of the testing to ultimately resolve the issue and prevent it from happening on future flights. These options could range from minor refurbishment of the current service module components to using another service module already in production. Each option is dependent on data points the team expects to collect in the coming weeks including a timeline for safely proceeding back to the launch pad.

“Safety of the Starliner spacecraft, our employees, and our crew members is this team’s number one priority,” said John Vollmer, vice president and program manager, Boeing’s Starliner program. “We are taking the appropriate amount of time to work through the process now to set this system up for success on OFT-2 and all future Starliner missions.”

Potential launch windows for OFT-2 continue to be assessed by NASA, Boeing, United Launch Alliance, and the Eastern Range. The team currently is working toward opportunities in the first half of 2022 pending hardware readiness, the rocket manifest, and space station availability.

Starliner Returns to Factory, Preparations Underway to Resolve Valve Issue

OFT-2 Starliner spacecraft
Boeing’s Starliner spacecraft returned Aug. 19, 2021, from the United Launch Alliance Vertical Integration Facility to the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida, where teams will work to diagnose and resolve a valve issue detected during the Aug. 3 launch attempt of NASA Boeing’s Orbital Flight Test-2. Photo credit: Boeing

Teams from Boeing and United Launch Alliance (ULA) safely returned the CST-100 Starliner to its production facility in Florida on Aug. 19 for continued work on the spacecraft’s service module propulsion system.

The Starliner Orbital Flight Test-2 spacecraft was removed from its Atlas V rocket inside the Vertical Integration Facility at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida and returned to the Commercial Crew and Cargo Processing Facility on NASA’s Kennedy Space Center.

The team now will perform propulsion system checkouts inside the factory’s hazardous processing area and determine the appropriate vehicle configuration for accessing and analyzing the system further. NASA and Boeing will recommend forward work as part of a formal process designed to aid in determining root cause and remediation steps.

In the weeks ahead, engineering teams from NASA and Boeing will work to diagnose and ultimately resolve a valve issue detected during the Aug. 3 countdown for NASA’s Boeing Orbital Flight Test-2, and resulted in the decision to postpone the launch destined for the International Space Station.

NASA, Boeing, and ULA will establish a new launch date once the issue is resolved.

NASA, Boeing Continue to Work Toward Understanding Starliner Service Module Valve Performance Issue

Boeing Starliner spacecraft
On July 29, 2021, Boeing’s CST-100 Starliner spacecraft is shown on top of the United Launch Alliance (ULA) Atlas V rocket in ULA’s Vertical Integration Facility.

NASA continues to work side-by-side with Boeing to understanding the CST-100 Starliner’s service module valve performance, including the unexpected indications some of the valves were in the closed position during its Aug. 3 launch attempt of Orbital Flight Test-2 (OFT-2).

With troubleshooting ongoing in the United Launch Alliance Vertical Integration Facility at NASA’s Kennedy Space Center in Florida, where Starliner will be powered and run through various procedures to help understand the issue, NASA will move forward with the launch and berthing of an important cargo mission to the International Space Station.

Northrop Grumman’s Cygnus spacecraft is scheduled to launch on the company’s Antares rocket at 5:56 p.m. Tuesday, Aug. 10, from NASA’s Wallops Flight Facility in Wallops Island, Virginia, with capture and berthing scheduled two days later at about 6:10 a.m. EDT Thursday, Aug. 12.

In parallel, managers and engineers with NASA and Boeing will continue to evaluate schedules based on where the troubleshooting efforts take them before deciding when the next official launch for the OFT-2 mission will take place.

NASA, Boeing Continue Starliner Data Analysis

Atlas V rocket with Starliner on launch pad
A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft onboard is seen on the launch pad on Thursday, July 29, 2021, at Space Launch Complex 41 in preparation for the Orbital Flight Test-2 (OFT-2) mission at Cape Canaveral Space Force Station in Florida. Photo Credit: (NASA/Aubrey Gemignani)

NASA and Boeing are continuing to work through steps to determine what caused the unexpected valve position indications on the CST-100 Starliner propulsion system.

The United Launch Alliance Atlas V with the Starliner spacecraft on top will be returned to its Vertical Integration Facility (VIF) at Launch Complex-41 on Cape Canaveral Space Force Station Thursday where engineers will have direct access to Starliner for continued troubleshooting.

The data will drive any corrective measures that may be necessary to ensure Starliner is ready for launch. When NASA’s Commercial Crew Program and Boeing Space agree the issue is resolved, a new launch opportunity will be selected, taking into account the readiness of all parties involved.

“The Boeing and NASA teams are working methodically to understand what caused the valve indications on the Starliner service module propulsion system,” Steve Stich, manager of the Commercial Crew Program, said. “The troubleshooting in the Vertical Integration Facility will help focus on potential causes and next steps before we fly the OFT-2 mission.”

Early in the launch countdown for the Tuesday, Aug. 3 launch attempt, engineers detected indications that not all of Starliner’s propulsion system valves were in the proper configuration needed for launch of the company’s second uncrewed orbital flight test to the International Space Station, a mission designed to test the end-to-end capabilities of the crew-capable system as part of NASA’s Commercial Crew Program.

Mission teams decided to halt the countdown to further analyze the issue, which was conducted later Tuesday via several steps to troubleshoot the incorrect valve indications, including cycling the service module propulsion system valves.

After presenting the data to NASA and Boeing managers, it was decided to relocate the Atlas V and Starliner to the VIF for further inspection and testing where access to the spacecraft is available. Engineering teams have ruled out a number of potential causes, including software, and the direct access is required to continue the assessment.

“This mission is extremely important for the Commercial Crew Program on the path to the Boeing Crewed Flight Test,” Stich said. “We will fly the mission when we are ready. I am extremely proud of the NASA and Boeing teams for their professionalism, perseverance, and methodical approach to solving complex problems.”

NASA and Boeing will take whatever time is necessary to ensure Starliner is ready for its important uncrewed flight test to the space station and will look for the next available opportunity after resolution of the issue.