From left (front to back), NASA astronauts Victor Glover, Christina Hammock Koch, and Reid Wiseman, along with Canadian Space Agency astronaut Jeremy Hansen, pose inside the Vehicle Advanced Demonstrator for Emergency Recovery (VADR) during a tour of Naval Base San Diego on July 19, 2023. VADR is a replica of the Orion crew module that will carry the astronauts around the Moon on Artemis II. Photo credit: U.S. Navy/Mass Communication Specialist 2nd Class Joshua Samoluk
The Artemis II crew – NASA astronauts Reid Wiseman, Victor Glover, Christina Hammock Koch, and Canadian Space Agency astronaut Jeremy Hansen – visited Naval Base San Diego on July 19 ahead of the first Artemis II recovery test in the Pacific Ocean, Underway Recovery Test-10. The test will build on the success of Artemis I recovery and ensure NASA and the Department of Defense personnel can safely recover astronauts and their Orion spacecraft after their trip around the Moon on the first crewed Artemis mission.
The crew met with recovery team members from NASA’s Exploration Ground Systems Program and the Department of Defense to learn more about the recovery process for their mission, which includes being extracted from the spacecraft after splashing down in the Pacific Ocean and being lifted via helicopter to the recovery ship where they will undergo routine medical checks before returning to shore.
The visit included a walkdown of the ground equipment and facilities the team uses to practice recovery procedures along with a walkthrough of the recovery ship. The crew will participate in full recovery testing at sea next year.
NASA’s SpaceX Crew-4 astronauts participate in a training session at the agency’s Kennedy Space Center in Florida late last year. From left, ESA (European Space Agency) astronaut Samantha Cristoforetti, mission specialist; NASA astronaut Kjell Lindgren, commander; NASA astronaut Bob Hines, pilot; and NASA astronaut Jessica Watkins, mission specialist. Photo credit: SpaceX
NASA and SpaceX managers have gathered at the agency’s Kennedy Space Center in Florida to start the Crew-4 mission’s Flight Readiness Review (FRR). Over the next several hours, the FRR will focus on the preparedness of SpaceX’s crew transportation system, the International Space Station, and its international partners to support the flight, and the certification of flight readiness.
After the conclusion of the FRR, NASA will hold a media teleconference to discuss the outcome. While the teleconference will not be televised, media may call in to ask questions via phone. Contact the Kennedy newsroom no later than 4 p.m. EDT for connection details.
Participants in the teleconference include:
Kathy Lueders, associate administrator, Space Operations Mission Directorate, NASA Headquarters
Steve Stich, manager, Commercial Crew Program, Kennedy
Joel Montalbano, manager, International Space Station, NASA’s Johnson Space Center
Zeb Scoville, chief flight director, Flight Operations Directorate, Johnson
Frank De Winne, program manager, International Space Station, ESA
NASA astronauts Kjell Lindgren, Robert Hines, and Jessica Watkins, and ESA (European Space Agency) astronaut Samantha Cristoforetti will launch on SpaceX’s Falcon 9 rocket and Crew Dragon spacecraft for the Crew-4 mission as part of NASA’s Commercial Crew Program. They will arrive at the International Space Station approximately 24 hours after launch. Crew-4 will arrive at station for a short overlap with NASA astronauts Raja Chari, Tom Marshburn, and Kayla Barron, and ESA astronaut Matthias Maurer, who flew to the station as part of the agency’s SpaceX Crew-3 mission in November 2021.
A test version of NASA’s Orion spacecraft is loaded into the well deck of a U.S. Navy ship in preparation for the ninth in a series of tests to verify and validate procedures and hardware that will be used to recover the spacecraft after it splashes down in the Pacific Ocean following the agency’s Artemis I mission. The first in an increasingly complex series of missions, Artemis I will test the Space Launch System rocket and Orion as an integrated system prior to crewed flights to the Moon. Photo credit: NASA/Pete Reutt
NASA and the U.S. Navy are preparing to head out to sea for the ninth in a series of tests to verify and validate procedures and hardware that will be used to recover the Orion spacecraft after it splashes down in the Pacific Ocean following deep space exploration missions.
During the weeklong test, the joint team will conduct simulations that will exercise all the operational procedures, including nighttime, to support certification of team members for the Artemis I mission. The team will practice recovering a test version of an Orion capsule and bringing it into the well deck of a Navy ship, ensuring all personnel are properly trained before the real Orion splashes down.
Orion is the exploration spacecraft designed to carry astronauts to the Moon and destinations not yet explored by humans. It is slated to launch atop NASA’s Space Launch System rocket on its first deep space mission to pave the way for future flights with astronauts.
At NASA’s Kennedy Space Center in Florida, a truck sprays water along the crawlerway to reduce dust ahead of the crawler-transporter moving the mobile launcher platform 2 (MLP-2) from Launch Pad 39A to a nearby park site in Launch Complex 39. MLP-2 was demolished, making way for newer, more advanced technology to be used in NASA’s Artemis missions. Photo credit: NASA/Kim Shiflett
By Jim Cawley NASA’s Kennedy Space Center
The mobile launcher platform 2, or MLP-2, served NASA well, as it was used for more than 50 Apollo and space shuttle missions at the agency’s Kennedy Space Center from 1968 to 2011.
A nine-month demolition project for the 25-foot high, 160-foot long, and 135-foot-wide platform, which weighed 9.1 million pounds, was completed last month. Though MLP-2 was a historic piece of equipment, its removal makes way for newer, more advanced technology at the Florida spaceport.
The two mobile launcher platforms are seen at the park site at Kennedy Space Center on Jan. 4, 2021. A nine-month demolition project for Mobile launcher platform 2, which used during the shuttle program, was recently completed. NASA/Kim Shiflett
“It was bittersweet having to dismantle MLP-2,” said John Giles, Exploration Ground Systems crawler transporter operations manager. “However, it allows us to make room for newer, more advanced assets to support Artemis missions that will return humans to the Moon and beyond.”
Mobile launcher platforms were used for shuttle missions lifting off from Launch Complex 39A and 39B. These structures did not require a tower since the launch pad had a tower and rotating service structure to allow access to the vehicle.
Since the retirement of the shuttle program, the historic Launch Complex 39A, once the site of Apollo and Saturn V missions, was leased to SpaceX and upgraded to support commercial launches carrying cargo and astronauts into space.
Launch Complex 39B also has changed with the times. It began as an Apollo era structure, was converted for shuttle launches, and now is a clean pad ready to support the Space Launch System (SLS) rocket, carrying the Orion spacecraft as the agency returns to the Moon. When SLS lifts off from pad 39B carrying Orion for the Artemis I mission, it will use the new, advanced mobile launcher that comes with a built-in tower.
Click here to watch a time-lapse video of the MLP-2 demolition.
A close-up view of the Artemis I Space Launch System rocket inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Sept. 20, 2021. All 10 levels of work platforms have been retracted from around the rocket as part of the umbilical release and retract test. During the test, several umbilical arms on the mobile launcher were extended to connect to the SLS rocket and then swung away from the launch vehicle, just as they will on launch day. Artemis I will be the first integrated test of the SLS and Orion spacecraft. In later missions, NASA will land the first woman and the first person of color on the surface of the Moon, paving the way for a long-term lunar presence and serving as a steppingstone on the way to Mars. Photo credit: NASA/Frank Michaux
Engineers with Exploration Ground Systems and contractor Jacobs successfully completed the Umbilical Release and Retract Test on Sept. 19 inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in preparation for the Artemis I mission.
The umbilicals will provide power, communications, coolant, and fuel to the rocket and the Orion spacecraft while at the launch pad until they disconnect and retract at ignition and liftoff.
“Previous testing at the Launch Equipment Test Facility and in the VAB refined our designs and processes and validated the subsystems individually, and for Artemis I, we wanted to prove our new systems would work together to support launch,” said Jerry Daun, Jacobs Arms and Umbilical Systems Operations Manager.
During the test, several umbilical arms extended to connect the Space Launch System (SLS) rocket and the mobile launcher. They swung away from the rocket, just as they will on launch day.
“This test is important because the next time these ground umbilical systems are used will be the day of the Artemis I launch,” said Scott Cieslak, umbilical operations and testing technical lead.
Teams will continue conducting tests inside the VAB before transporting the Orion spacecraft to the assembly building and stacking it atop the SLS, completing assembly of the rocket for the Artemis I mission.
“It was a great team effort to build, and now test, these critical systems,” said Peter Chitko, arms and umbilicals integration manager. “This test marked an important milestone because each umbilical must release from its connection point at T-0 to ensure the rocket and spacecraft can lift off safely.”
Artemis I will be the first integrated test of the SLS and Orion spacecraft. In later Artemis missions, NASA will land the first woman and the first person of color on the surface of the Moon, paving the way for a long-term lunar presence and serving as a steppingstone on the way to Mars.
The four ogive fairings for the Orion Artemis I mission are installed on the launch abort system assembly inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida on Aug. 20, 2021. Photo credit: NASA/Kim Shiflett
Teams at NASA’s Kennedy Space Center in Florida are putting the final touches on the Orionspacecraft for the Artemis I mission by connecting the ogive fairings for the launch abort system (LAS) assembly. Pronounced oh-jive, the ogive fairings consist of four protective panels, and their installation will complete the LAS assembly.
Technicians and engineers from the center’s Exploration Ground Systems and contractor Jacobs recently finished attaching the launch abort tower to the top of the Orion crew module. They then began lifting and mating the lightweight fairings, which will shield the crew module from the severe vibrations and sounds it will experience during launch. One of the fairing panels has a hatch to allow access to the crew module before launch.
During Artemis missions, the 44-foot-tall LAS will detach from the spacecraft when it is no longer needed, shortly after launching on the Space Launch System (SLS) rocket, to lighten the journey to the Moon. Although the abort motors will not be active on the uncrewed Artemis I flight test, the system is intended to protect astronauts on future missions if a problem arises during launch or ascent by pulling the spacecraft away from a failing rocket.
Once LAS installation is complete, the spacecraft will leave the Launch Abort System Facility and continue on its path to the pad, making its way to the spaceport’s Vehicle Assembly Building to be integrated with the SLS rocket ahead of the launch.
Teams with NASA’s Exploration Ground Systems (EGS) and contractor Jacobs integrated the launch abort system (LAS) with the Orion spacecraft inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida on July 23, 2021. Photo credit: NASA/Kim Shiflett
Ahead of the Artemis I lunar-bound mission, teams at NASA’s Kennedy Space Center joined the launch abort tower to the Orion spacecraft on July 23. Working inside the spaceport’s Launch Abort System Facility, engineers and technicians with Exploration Ground Systems and primary contractor, Jacobs, lifted the system above the spacecraft and coupled it with the crew module.
The launch abort system is designed to protect astronauts if a problem arises during launch by pulling the spacecraft away from a failing rocket. Although there will be no crew Artemis I, the launch abort system will collect flight data during the ascent to space and then jettison from the spacecraft.
Next, teams will install four ogives – the protective panels that shield the upper portion of the spacecraft during its entry into orbit. Once final checkouts are complete, Orion will be integrated with the Space Launch System rocket.
The Orion spacecraft for the Artemis I mission arrives at Kennedy Space Center’s Launch Abort System facility on July 10, 2021, after being transported from the Florida spaceport’s Multi-Payload Processing Facility earlier in the day. Photo credit: NASA/Cory Huston
The Orion spacecraft for the Artemis I mission recently completed fueling and servicing checks while inside the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida. The capsule has now made it to its next stop on the path to the pad – the spaceport’s Launch Abort System Facility.
Crowning the spacecraft with its aerodynamic shape, the launch abort system is designed to pull crew away to safety from the Space Launch System (SLS) rocket in the event of an emergency during launch. This capability was successfully tested during the Orion Pad Abort and Ascent Abort-2 tests and approved for use during crewed missions.
Teams with Exploration Ground Systems and contractor Jacobs will work to add parts of the launch abort system onto the spacecraft. Technicians will install four panels that make up the fairing assembly and protect the spacecraft from heat, air, and acoustic environments during launch and ascent. A launch tower will top the fairing assembly to house the pyrotechnics and a jettison motor. The system will also be outfitted with instruments to record key flight data for later study.
With successful demonstration of the system during previous tests, the abort motor that pulls the spacecraft away from the rocket and attitude control motor that steers the spacecraft for a splashdown during an abort will not be functional for the uncrewed Artemis I mission. The jettison motor will be equipped to separate the system from Orion in flight once it is no longer needed, making Orion thousands of pounds lighter for the journey to the Moon.
Once the system’s integration is complete, teams will transport the spacecraft to the center’s Vehicle Assembly Building. There, it will join the already stacked flight hardware and be raised into position atop the SLS rocket, marking the final assembly milestone for the Artemis rocket.
Launching in 2021, Artemis I will be a test of the Orion spacecraft and SLS rocket as an integrated system ahead of crewed flights to the Moon. Under Artemis, NASA aims to land the first woman and first person of color on the Moon and establish long-term lunar exploration.
Teams with NASA’s Exploration Ground Systems and contractor Jacobs integrate the interim cryogenic propulsion stage (ICPS) for NASA’s Space Launch System (SLS) rocket with the launch vehicle stage adapter (LVSA) atop the massive SLS core stage in the agency’s Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida on July 5, 2021. Photo credit: NASA/Kim ShiflettThe ICPS is a liquid oxygen and liquid hydrogen-based system that will fire its RL 10 engine to give the Orion spacecraft the big in-space push needed to fly tens of thousands of miles beyond the Moon. Photo credit: NASA/Kim Shiflett
The ICPS’s RL 10 engine is housed inside the launch vehicle stage adapter, which will protect the engine during launch. The adapter connects the rocket’s core stage with the ICPS, which was built by Boeing and United Launch Alliance.
The ICPS will fire its RL 10 engine to send the Orion spacecraft toward the Moon. Its European-built service module will provide the power to take the spacecraft on a journey tens of thousands of miles beyond the Moon.
Before attaching the Orion spacecraft to the rocket, teams will conduct a series of tests to assure all the rocket components are properly communicating with each other, the ground systems equipment, and the Launch Control Center.
The ICPS moved to the VAB on June 19, after technicians in the center’s Multi-Payload Processing Facility completed servicing the flight hardware inside.
Launching in 2021, Artemis I will be an uncrewed flight test of the Orion spacecraft and SLS rocket as an integrated system ahead of missions with astronauts. Under Artemis, NASA aims to land the first woman and first person of color on the Moon and establish a long-lasting presence on and around the Moon while preparing for human missions to Mars.
Teams with NASA’s Exploration Ground Systems and contractor Jacobs integrate the launch vehicle stage adapter (LVSA) for NASA’s Space Launch System (SLS) rocket with the massive SLS core stage on the mobile launcher in the agency’s Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida on June 22, 2021. Photo credit: NASA/Frank Michaux
The adapter is the cone shaped piece that connects the rocket’s core stage and interim cryogenic propulsion stage (ICPS), which will provide the Orion spacecraft with the additional thrust needed to travel tens of thousands of miles beyond the Moon. Up next, the ICPS will be lifted from the VAB floor onto the stage adapter.
Launching in 2021, Artemis I will be an uncrewed flight test of the Orion spacecraft and SLS rocket as an integrated system ahead missions with astronauts. Through the series of Artemis missions, NASA aims to land the first woman and first person of color on the Moon and establish a long-lasting presence on and around the Moon while preparing for human missions to Mars.