NASA’s iconic worm logo has been added to the outward-facing wall of Orion’s crew module adapter (CMA) inside the Multi-Payload Processing Facility (MPPF) at NASA’s Kennedy Space Center in Florida. In the background is the Space Launch System rocket’s Interim Cryogenic Propulsion Stage, undergoing fueling and servicing inside the MPPF alongside the CMA. Photo credit: NASA/Glenn Benson
The Orion spacecraft receives another iconic NASA “worm” logo ahead of the Artemis I mission. On April 28 teams with the agency’s Exploration Ground Systems and lead contractor Jacobs completed painting the retro insignia on the outboard wall of the spacecraft’s crew module adapter (CMA) – the piece of hardware connecting the crew module to the European-built service module – inside the Multi-Payload Processing Facility (MPPF) at NASA’s Kennedy Space Center in Florida.
While a decal of the historic logo was added to the underside of the CMA in September 2020, having it painted on the siding of the spacecraft will make it visible as the spacecraft is poised atop the Space Launch System (SLS) rocket, awaiting liftoff from Kennedy’s Launch Pad 39B.
The worm logo was officially introduced in 1975, retired in 1992, and then made a comeback in 2020, just as NASA entered a new era of human spaceflight. In addition to its appearance on the CMA, the bright red logo also was painted on the SLS twin solid rocket boosters in August 2020.
The Orion spacecraft and Interim Cryogenic Propulsion Stage (ICPS) – the upper stage of the rocket responsible for sending Orion on its journey around the Moon – are currently being fueled and serviced in the MPPF. Once fueling is complete, Orion will move to the Launch Abort System Facility for integration of its launch abort system, while the ICPS will move to the Vehicle Assembly Building to be stacked on the mobile launcher.
Artemis I will be the first integrated test of SLS and Orion and will pave the way for landing the first woman and first person of color on the lunar surface. The mission will be a stepping stone for deep space exploration, leading the agency’s efforts under the Artemis program for a sustainable presence on the Moon and preparing for human missions to Mars.
Click here for a video of the logo being added to the CMA.
Water flows through a small-scale, 3D-printed nozzle during prototype testing of a new rainbird system on March 24, 2021, at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Ben Smegelsky
As NASA prepares for the uncrewed Artemis I test flight, teams at the agency’s Kennedy Space Center are also hard at work getting ready for the Artemis II mission that will send astronauts on a trip around the Moon ahead of a crewed lunar landing.
Teams with NASA’s Exploration Ground Systems and supporting contractors conduct prototype testing of a new rainbird system at the agency’s Kennedy Space Center in Florida on March 24, 2021, that can be used for the crewed Artemis II mission to the Moon. Photo credit: NASA/Ben Smegelsky
This includes assessing a new prototype “rainbird” system designed to protect the mobile launcher – as well as NASA’s Space Launch System (SLS) – when the engines roar to life. The March 24 tests included running various water pressures through small-scale, 3D-printed nozzles to capture data that can be used to develop full-scale hardware.
The rainbirds will release enough water to fill 40 swimming pools in 40 seconds. This massive volume will help absorb the heat and energy when SLS, the most powerful rocket the agency has ever built, lifts off with the Orion spacecraft from Kennedy’s Launch Pad 39B.
While upgraded rainbirds – large-scale water nozzles – have already been tested and installed on the mobile launcher for the Artemis I launch, Exploration Ground Systems (EGS) found room for improvement. This led teams from EGS and supporting contractors to start testing another prototype system to distribute water more evenly to maximize performance ahead of the Artemis II launch.
Alongside the iconic Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, teams with the agency’s Exploration Ground Systems and supporting contractors conduct prototype testing of a new rainbird system on March 24, 2021. Photo credit: NASA/Ben Smegelsky
“By running our prototype through a range of pressures, we can simulate what each of the rainbirds will see on the mobile launcher on launch day and have a better understanding of how they will perform when we scale them back up to full size,” said Dave Valletta, a design engineer at Kennedy working on the ignition overpressure protection and sound suppression (IOPSS) system.
A critical piece of the IOPSS system, the rainbird got its name decades ago when space shuttle developers noted that it looked like a garden sprayer.
“When we saw the pattern of the water discharge during the first test flow in the shuttle program, it reminded us of your common lawn sprinkler, only it did not rotate and was 100 times the size,” said Jerry Smith, a design engineer for mechanical-fluid systems at Kennedy.
Once prototype testing is complete, allowing better prediction of future spray patterns, the team will move forward with designing a preferred concept. That concept will be built and installed on the mobile launcher to undergo verification and validation testing, where the newly installed nozzles will be fully integrated with the launch pad to ensure they work as expected.
“The confidence check gained from these tests will lead us to developing full-scale nozzles for the mobile launcher,” said Gerald Patterson, IOPSS and fire suppression system operations engineer and test lead. “Once installed, they’ll provide more efficient water distribution across the deck and, ultimately, better protection to ground systems, the SLS rocket, and its crew for Artemis II and beyond.”
Inside the Launch Control Center’s Firing Room 1 at NASA’s Kennedy Space Center in Florida, members of the Artemis I launch team rehearse the procedures for fueling the Space Launch System (SLS) rocket with super cold propellants, or cryogenics, on Aug. 18, 2020. Photo credit: NASA/Chad Siwik
The launch team for Artemis I is back in the firing room at NASA’s Kennedy Space Center for more practice. The team conducted a simulation on the procedures for cryogenic loading, or fueling the Space Launch System rocket with super cold propellants. During simulations potential problems are introduced to the team to test the application of firing room tools, processes, and procedures.
The Exploration Ground Systems team of launch controllers who will oversee the countdown and liftoff of the SLS rocket and Orion spacecraft will be practicing the procedures several more times ahead of launch. Special protocols have been put in place to keep personnel safe and healthy, including limiting personnel in the firing room, using acrylic dividers and adjusting assigned seating for the cryo team.
Inside the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida, Payton Jones, at left, a launch vehicle processing technician, and Bradley Bundy, a spaceflight technician, both with Jacobs, complete the first mate pinning of the right-hand motor segment to the right-hand aft skirt on one of the two solid rocket boosters for the agency’s Space Launch System. Photo credit: NASA/Kim Shiflett
Inside the Florida spaceport’s Rotation, Processing and Surge Facility, the NASA and Jacobs team completed a pin. The pinning activity involved using bolts to attach one of five segments that make up one of two solid rocket boosters for SLS to the rocket’s aft skirt. A crane crew assisted in mating the aft segments to the rocket’s two aft skirts.
Inside the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida, Pablo Martinez, a handling, mechanical and structures engineer on the Jacobs Technology Inc. Test and Operations Support Contract, prepares to insert the first of many pins that will secure the Space Launch System’s right-hand motor segment to the rocket’s right-hand aft skirt. Photo credit: NASA/Kim Shiflett
A handful of the team members gained pinning experience on boosters for the space shuttle, while the rest were first-time pinners. Pablo Martinez, Jacobs TOSC handling, mechanical and structures engineer, inserted the first of 177 pins per joint to complete the first official step in stacking the SLS boosters.
Manufactured by Northrop Grumman in Utah, the 177-foot-tall twin boosters provide more than 75 percent of the total SLS thrust at launch. SLS is the most powerful rocket NASA has ever built.
The SLS rocket will launch NASA’s Orion spacecraft and send it to the Moon for Artemis I — a mission to test the two as an integrated system, leading up to human missions to the Moon. Under the Artemis program, NASA will land the first woman and the next man on the Moon by 2024.
An aerial view of Launch Complex 39B at NASA’s Kennedy Space Center in Florida with Exploration Ground Systems’ mobile launcher for the Artemis I mission on the pad. The mobile launcher, atop crawler-transporter 2, made a solo trek from the Vehicle Assembly Building to the surface of pad B in June 2019 for integrated testing. Photo credit: NASA/Frank Michaux
A legacy of the Apollo Program and shuttle era, Launch Pad 39B at NASA’s Kennedy Space Center in Florida is the site of NASA’s return to the Moon and is now ready for Artemis I—an uncrewed mission around the Moon and back. For the past few years, Exploration Ground Systems (EGS) has modified and upgraded the launch pad for the Space Launch System (SLS) rocket and Orion spacecraft to help accomplish NASA’s lunar exploration goals.
A wet flow test at Launch Pad 39B on Sept. 30, 2019, tests the sound suppression system that will be used for launch of NASA’s Space Launch System for the Artemis I mission. During the test, about 450,000 gallons of water poured onto the Pad B flame deflector, the mobile launcher flame hole and on the launcher’s blast deck. This was the first time the ground launch sequencer that will be used on the day of launch was used for the timing of a sound suppression test. Photo credit: NASA/Kim Shiflett
“Getting the pad ready for Artemis I has transformed the site for a new generation of space exploration,” said Regina Spellman, EGS senior project manager for Pad 39B. “When I look back on when we first inherited it from the Space Shuttle Program to where we are today, I am so proud of all the amazing things that the team has accomplished.”
Engineers have replaced or upgraded pad subsystems used for Apollo and the Space Shuttle Program to support the powerful SLS rocket and multi-user spaceport. The guiding principle behind the upgrades and modifications has been to make the area a clean pad, one with no launch support structures on top, which will allow a variety of rockets to launch from the pad.
Construction is complete on the main flame deflector in the flame trench at Launch Complex 39B at NASA’s Kennedy Space Center in Florida. The flame deflector will safely deflect the plume exhaust from the Space Launch System rocket during launch. It will divert the rocket’s exhaust, pressure and intense heat to the north at liftoff. Exploration Ground Systems refurbished the pad to support the launch of the SLS rocket and Orion on Artemis I, the first uncrewed mission for the agency’s Artemis program. Photo credit: NASA/Kim Shiflett
“The Ground Systems architecture with a clean pad concept minimizes the time the vehicle is out at the pad, exposed to the elements. It also minimizes the amount of exposed infrastructure that has to be maintained between launches,” Spellman said.
The basics that every rocket needs are in place, such as electrical power, a water system, flame trench and safe launch area. The other needs of individual rockets, including access for workers, can be met with the towers, such as a mobile launcher.
During the refurbishment projects, teams removed and replaced 1.3 million feet of copper cables with 300,000 feet of fiber cable. The water tower for the upgraded sound suppression system holds roughly 400,000 gallons of water, or enough to fill 27 average swimming pools. At ignition and liftoff, this water is dumped on the mobile launcher and inside the flame trench in less than 30 seconds. The three lightning towers surrounding the pad are each about 600 feet tall – taller than the Vehicle Assembly Building, which is 525 feet tall. They form a linked system of wires above the pad that will protect the launch vehicle during storms.
The refurbished flame trench — the size of one and a half football fields — and new flame deflector will be exposed to a peak temperature of 2,200 degrees Fahrenheit during launch. Technicians installed more than 96,000 heat-resistant bricks on the walls of the flame trench during the refurbishment project.
“The EGS pad team has already ramped up to prepare the pad for the second Artemis mission when we will launch humans,” Spellman said. “Several projects are underway, some even under construction, which will support the flight crew.”
Work now is in progress on a new liquid hydrogen tank as well as an emergency egress system for Artemis II, the first crewed launch.
Apollo 10 was the first mission to begin at Launch Pad 39B when it lifted off May 18, 1969, to rehearse the first Moon landing. Three crews of astronauts launched from the pad to the Skylab space station in 1973. Three Apollo astronauts who flew the historic Apollo-Soyuz Test Project mission to link up in space also launched from the pad in 1975. In all, 53 space shuttle missions and the Ares I-X test flight launched from the pad between 1986 and 2011.
“The work and the team itself has evolved over the years, but one thing has always been constant, we have always been dedicated to getting Launch Pad 39B back to launching humans to space, farther and safer than ever before,” Spellman said.
NASA Launch Director Charlie Blackwell-Thompson, above, confers with Senior NASA Test Director Jeff Spaulding, left, and Test, Launch and Recovery Operations Branch Chief Jeremy Graeber in Firing Room 1 at Kennedy Space Center’s Launch Control Center during a countdown simulation. Photo credit: NASA/Cory Huston
By Jim Cawley NASA’s Kennedy Space Center
Before NASA’s mighty Space Launch System (SLS) rocket can blast off from the agency’s Kennedy Space Center to send the Orion spacecraft into lunar orbit, teams across the country conduct extensive testing on all parts of the system. Guiding that effort at the Florida spaceport are NASA test directors, or NTDs.
NTDs within the Exploration Ground Systems program are in charge of flight and ground hardware testing in Kennedy’s Launch Control Center firing rooms 1 and 2, where activities involved with preparing rockets, spacecraft and payloads for space can be controlled from computer terminals. They are responsible for emergency management actions, helping lead the launch team during all facets of testing, launch and recovery.
NASA’s Artemis missions will land American astronauts on the Moon by 2024, beginning with Artemis I, the uncrewed flight test of SLS and Orion.
“It’s certainly an amazing feeling to be responsible for setting up the building blocks of a new program which will eventually take us to the Moon, Mars and beyond,” said Senior NASA Test Director Danny Zeno.
Senior NASA Test Director Danny Zeno is leading the development of test plans and procedures that are essential to flight and ground hardware for the Artemis missions. Photo credit: NASA
Zeno is leading the development of test plans and procedures that are essential to flight and ground hardware for the Artemis missions. This includes proving the functionality of flight and ground systems for the assembled launch vehicle configuration, verifying the mobile launcher arms and umbilicals operate as expected at launch, and performing a simulated launch countdown with the integrated vehicle in the Vehicle Assembly Building.
The 14-year NTD veteran relishes his hands-on role in successfully testing and launching SLS — the most powerful rocket NASA has ever built.
“It’s very fulfilling,” Zeno said. “What excites me about the future is that the work I’m doing today is contributing to someday having humans living and working on other planets.”
There are 18 people in the NTD office — all of whom must undergo rigorous certification training in the management and leadership of test operations, systems engineering and emergency response. They are in charge of the people, hardware and schedule during active firing room testing.
“The NTD office is at the center of testing operations, which will ensure that we are ready to fly the Artemis missions,” said Launch Director Charlie Blackwell-Thompson. “As we lay the foundation for exploring our solar system, the NASA test directors are on the front lines of making it happen.”
An NTD works from a console in the firing room during integrated or hazardous testing, guiding the team through any contingency or emergency operations. They lead critical testing on Launch Pad 39B and the mobile launcher, the 370-foot-tall, 11 million-pound steel structure that will launch the SLS rocket and Orion spacecraft on Artemis missions to the Moon and on to Mars. This includes sound suppression, fire suppression and cryogenic fluid flow tests, as well as testing the crew access arm and umbilicals — connections that will provide communications, coolant and fuel up until launch.
While the majority of work for the ground and flight systems is pre-liftoff, the job certainly doesn’t end there.
Senior NASA Test Director Jeff Spaulding has nearly three decades of experience in the Test, Launch and Recovery Office. Photo credit: NASA/Cory Huston
“It culminates in a two-day launch countdown in which all of the groups, teams and assets are required to function together in an almost flawless performance to get us to launch,” said Senior NASA Test Director Jeff Spaulding.
Spaulding has nearly three decades of experience in the Test, Launch and Recovery Office. For Artemis I, he is leading the launch control team and support teams during the launch countdown for Blackwell-Thompson, who will oversee the countdown and liftoff of SLS.
Just over three miles from the launch pad, on launch day, Spaulding will be in the firing room running the final portion of cryogenic loading through launch. During this time, supercool propellants — called cryogenics — are loaded into the vehicle’s tanks. He will perform the same tasks for the wet dress rehearsal, which is a full practice countdown about two months before launch that includes fueling the tanks and replicating everything done for launch prior to main engine start.
At the end of the mission, part of the team will lead the recovery efforts aboard a Navy vessel after Orion splashdown. The NASA recovery director and supporting NTDs are responsible for planning and carrying out all operations to recover the Orion capsule onto a U.S. Navy ship. This includes working closely with the Department of Defense to ensure that teams coordinate recovery plans, meet requirements, and follow timelines and procedures to bring our heroes and spacecraft home quickly and safely.
“We are supported by numerous teams at Kennedy and elsewhere around the country that are helping us with our historic first flight as we blaze a path toward landing astronauts on the Moon in 2024,” Spaulding said.
NASA Kennedy Space Center Director Bob Cabana, far left, moderates a panel discussion with senior leaders of NASA and center programs during a Community Leaders Update on Feb. 18, 2020, at the Kennedy Space Center Visitor Complex. From second from left are Tom Engler, director, Center Planning and Development; Jenny Lyons, deputy manager, Gateway Logistics Element; Barbara Brown, chief technologist, Exploration Research and Technology Programs; Jeremy Parsons, deputy manager, Exploration Ground Systems; and Phil Meade, associate director, Spaceport Integration and Services. Photo credit: NASA/Kim Shiflett
Community leaders, business executives, partners, educators and government representatives gathered at the Kennedy Space Center Visitor Complex on Feb. 18, 2020, for an update on Kennedy Space Center’s accomplishments and what’s ahead for this year. Center Director Robert Cabana greeted the group and served as moderator of a panel discussion with senior leaders of NASA programs based at the center.
Trent Smith, left, NASA Veggie project manager at Kennedy Space Center, talks to an attendee about the Veggie plant growth system that is currently in use on the International Space Station, during a Community Leaders Update on Feb. 18, 2020, at the Kennedy Space Center Visitor Complex in Florida. Photo credit: NASA/Kim Shiflett
The panelists gave an overview of the past year’s accomplishments, focused on what’s in store for this year and answered questions from the audience.
Artemis missions will pave the way for missions to Mars. EGS is preparing all of the ground support equipment and facilities for Artemis I. Verification and validations have been completed on the mobile launcher in the Vehicle Assembly Building. Simulations of launch countdown are taking place in Launch Control Center Firing Room 1. Teams are practicing stacking of Space Launch System boosters using pathfinder replicas. “Work is continuing on the Spaceport Command and Control System,” Parsons said. “The Orion spacecraft for Artemis I will arrive later this year.”
Steve Payne, far left, with NASA’s Commercial Crew Program, visits with a guest during a Community Leaders Update hosted by Kennedy Space Center on Feb. 18, 2020. Photo credit: NASA/Kim Shiflet
Gateway is NASA’s permanent lunar outpost that will be positioned in orbit around the Moon. Gateway will include a power and propulsion element and habitation modules, and eventually airlock capabilities. The center’s piece of the Gateway is logistics services, which will be used to deliver cargo, consumables and supplies for scientific research and technology demonstrations and commercial use.
“This center assignment leverages Kennedy’s extensive experience in enabling commercial services, as well as our spacecraft and payload integration and processing expertise,” Lyons said.
Teams from NASA’s Exploration Ground Systems and Space Launch System (SLS) practice SLS booster stacking with pathfinders inside Kennedy Space Center’s Vehicle Assembly Building on Nov. 19, 2019. SLS will launch the first woman and next man to the Moon by 2024 through the Artemis program. Photo credit: NASA/Kim Shiflett
Spaceport Integration and Services is maintaining an integrated master schedule of all launches and processing activities. Kennedy and the Cape Canaveral Air Force Station are on track to manage more than 40 launches this year. The team continues to build relationships with commercial and government partners. The future includes keeping up with the launch demand and operating in non-traditional roles.
“We can only be successful when commercial and government space are integrated,” Cabana said.
CPD is working on attracting more businesses to the spaceport. The goal is to enable companies to be successful; but the companies need to work on achieving that success. They are supporting one of the center’s core missions: enable companies to fly what they have to space. Currently, Boeing, SpaceX, United Launch Alliance and Blue Origin are doing just that.
Food production–plants and habitats–and dust mitigation are two of the technologies being developed by ER&T. “Plant production has to be compact,” Brown said. Two growth chambers developed here are currently on the International Space Station: Veggie and the Advanced Plant Habitat. The team also is looking at regolith operations and how to dampen the effect of dust that is kicked-up as landers touchdown on surfaces such as the Moon.
“We have an amazing year ahead of us,” Cabana said. “It’s our community working together that makes it so successful.”
In High Bay 4 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane moves Space Launch System (SLS) solid rocket booster pathfinder segments to stack them atop other pathfinder segments during a training exercise on Jan. 8, 2020. Photo credit: NASA/Glenn Benson
NASA’s Exploration Ground Systems team, including engineers, technicians and crane operators with contractor Jacobs, are practicing lifting and stacking operations with pathfinder segments of Northrup Grumman’s solid rocket boosters, which will provide extra thrust for NASA’s Space Launch System rocket. Practice took place in High Bay 4 of the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida.
”The pathfinder training has gone extremely well,” according to Michael McClure, Jacobs’ lead engineer for the Handling, Mechanical and Structures Engineering Group. “This is part of a series of practice exercises, which are providing great experience, especially for our new technicians, engineers, quality control personnel and crane operators.”
Stacking rehearsals help prepare the team for actual processing of launch hardware for Artemis missions. These specific pathfinder segments are inert, full-scale replicas of the actual solid rocket boosters, with the same weight (300,000 pounds) and center of gravity.
During launch hardware processing, the booster segments will be shipped by train to Kennedy from the Northrup Grumman facility in Utah. They will arrive at a processing facility to be configured for final processing, then move to the VAB, where the launch processing team will stack them vertically on the mobile launcher. After the boosters are stacked, the SLS Core Stage will be lowered onto the mobile launcher and will be mated to the boosters.
At launch, the five-segment, 17-story-tall twin boosters will provide 3.6 million pounds of thrust each at liftoff to help launch the SLS carrying Orion on Artemis I, its first uncrewed mission beyond the Moon.
Backdropped by clouds lit with sunrise, NASA’s Pegasus barge departs the Launch Complex 39 turn basin wharf. Photo credit: Cory Huston
NASA’s Pegasus barge, with the 212-foot-long Space Launch System (SLS) rocket core stage pathfinder secured inside, departed the Launch Complex 39 turn basin wharf at NASA’s Kennedy Space Center in Florida on Oct. 31, 2019.
The 212-foot-long Space Launch System (SLS) rocket core stage pathfinder is moved inside the Pegasus barge on Oct. 28, 2019, in preparation for departure. Photo credit: NASA/Kim Shiflett
The pathfinder is a full-scale mock-up of the rocket’s core stage. It was used by the Exploration Ground Systems Program and its contractor, Jacobs, to practice offloading, moving and stacking maneuvers inside the Vehicle Assembly Building using ground support equipment to train employees and certify all the equipment works properly. The pathfinder was at Kennedy for about a month.
The barge is carrying the pathfinder back to the agency’s Michoud Assembly Facility in Louisiana.
NASA’s Pegasus Barge arrives at the Launch Complex 39 turn basin wharf at Kennedy Space Center in Florida on Sept. 27 to make its first delivery to Kennedy in support of the agency’s Artemis missions. Photo credit: NASA/Mike Downs
NASA’s Pegasus Barge arrived at the agency’s Kennedy Space Center in Florida on Sept. 27, carrying the 212-foot-long core stage pathfinder for the Space Launch System (SLS) rocket. Weighing in at 228,000 pounds, the pathfinder is a full-scale mock-up of the rocket’s core stage and will be used to validate ground support equipment and demonstrate it can be integrated with Kennedy facilities.
NASA’s Pegasus Barge makes its way along the intercoastal waterway to its destination at the Kennedy Space Center Launch Complex 39 turn basin wharf on Sept. 27, to make its first delivery to Kennedy in support of the agency’s Artemis missions. Photo credit: NASA/Mike Downs
After arriving at the Launch Complex 39 turn basin wharf – a docking area initially used during the Space Shuttle Program that has been modified to accommodate SLS hardware deliveries – the pathfinder was moved into the Vehicle Assembly Building (VAB) on Sept. 30, where it will remain for testing for about one month.
While in the VAB, pathfinder will provide NASA’s Exploration Ground Systems (EGS) and contractor Jacobs with the opportunity to practice stacking maneuvers in the VAB’s High Bay 3 prior to the arrival of the SLS flight hardware that will be processed for the agency’s Artemis I mission.
“This will help ensure that all core stage engineers and technicians are trained and certified in preparation for the flight core stage processing,” said Jim Bolton, EGS core stage element operations manager at Kennedy. “It’s a very significant milestone that will demonstrate the capabilities and ability for KSC to receive, process and integrate that flight hardware.”
The core stage – the largest rocket stage in the world and the backbone of SLS – will provide the power necessary to send NASA’s Orion spacecraft beyond Earth’s orbit and to the Moon. Before it can be brought to Kennedy for processing, the core stage will undergo its first full test with all flight hardware, known as a green run, at the agency’s Stennis Space Center in Mississippi. Following this, Pegasus will make its return journey to Kennedy in 2020 – this time, delivering the SLS core stage for launch.