Engineers Mark Completion of Umbilical Testing at Launch Equipment Test Facility

A banner signing event was held at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida to mark completion of umbilical testing.
A banner signing event was held at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida to mark completion of umbilical testing. Photo credit: NASA/Kim Shiflett

The team that tested the umbilical lines and launch accessories that will connect from the mobile launcher (ML) to NASA’s Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 celebrated their achievement during a banner signing at the Launch Equipment Test Facility (LETF) at the agency’s Kennedy Space Center in Florida.

Engineers and technicians in the Engineering Directorate and the Exploration Ground Systems Program, along with contractor support, began the tests at the LETF about 2.5 years ago. The first to be tested was one of two aft skirt electrical umbilicals. Testing of the final umbilical, the second of two tail service mast umbilicals, was completed on June 27.

“The team of NASA test engineers and test managers, and contractor engineers and technicians, worked tirelessly six days a week, 10 hours a day, in order to meet the highly aggressive schedule and deliver the hardware to the mobile launcher for installation,” said Jeff Crisafulli, Test and Design branch chief in the Engineering Directorate.

In all, 21 umbilicals and launch accessories were tested on various simulators at the LETF that mimicked conditions during launch to ensure they are functioning properly and ready for installation on the ML. Most have been delivered and installed on the ML tower. These include the Orion service module umbilical, interim cryogenic propulsion stage umbilical, core stage forward skirt umbilical and core stage inter-tank umbilical. Two aft skirt electrical umbilicals, two aft skirt purge umbilicals, a vehicle stabilizer system, eight vehicle support posts and two tail service mast umbilicals were installed on the 0-level deck of the ML.

Before launch, the umbilical lines will provide power, communications, coolant and fuel to the rocket and spacecraft. Additional accessories will provide access and stabilization. During launch, each umbilical and accessory will release from its connection point, allowing the SLS and Orion to lift off safely from the launch pad.

“Design, fabrication and testing of the new mobile launcher’s umbilicals and launch accessories is a once-in-a-lifetime opportunity that I am proud to have been part of,” Crisafulli said.

Aeroshells Prepped for Vital Orion Launch Abort System Test

The third and final aeroshell, at left, for Orion's Launch Abort System (LAS) is in High Bay 4 of the Vehicle Assembly Building on July 12, 2018, at Kennedy Space Center after its arrival from EMF Inc. on nearby Merritt Island.
The third and final aeroshell, at left, for Orion’s Launch Abort System (LAS) is in High Bay 4 of the Vehicle Assembly Building on July 12, 2018, at Kennedy Space Center after its arrival from EMF Inc. on nearby Merritt Island.

The third and final aeroshell, at left, for Orion’s Launch Abort System (LAS) is in High Bay 4 of the Vehicle Assembly Building on July 12, 2018, at NASA’s Kennedy Space Center in Florida after its arrival from EMF Inc. on nearby Merritt Island. In the photo above, technicians prepare the aeroshell to be lifted off of the flatbed truck and transferred to slats. All three aeroshells will be stacked and prepared for a full-stress test of the LAS, called Ascent Abort-2 (AA-2) flight test, scheduled for April 2019.

During the test, a booster will launch from Space Launch Complex 46 at Cape Canaveral Air Force Station carrying a fully functional LAS and a 22,000-pound Orion test vehicle to an altitude of 31,000 feet and traveling at more than 1,000 miles per hour. The test will verify the LAS can steer the crew module and astronauts aboard to safety in the event of an issue with the Space Launch System (SLS) rocket when the spacecraft is under the highest aerodynamic loads it will experience during a rapid climb into space.

NASA’s Orion is being prepared for its first integrated uncrewed flight atop the SLS on Exploration Mission-1.

Photo credit: NASA/Frank Michaux

Chilling Out During Liquid Oxygen Tank Test

The liquid oxygen tank at Launch Pad 39B at Kennedy Space Center in Florida.Exploration Ground Systems (EGS) chilled out recently with a pressurization test of the liquid oxygen (LO2) tank at Launch Pad 39B at NASA’s Kennedy Space Center in Florida – Pad 39B, recently upgraded by the EGS team for the agency’s new Space Launch System rocket.

The six-hour test of the giant sphere checked for leaks in the cryogenic pipes leading from the tank to the block valves, the liquid oxygen sensing cabinet, and new vaporizers recently installed on the tank.

The SLS will use both liquid oxygen and liquid hydrogen. During tanking, some of the liquid oxygen, stored at minus 297 degrees Fahrenheit, boils off and vapor or mist is visible. While the tank can hold up to 900,000 gallons of liquid oxygen; during the test it only contained 590,000 gallons of the super-cooled propellant.

The test was monitored by engineers and technicians inside Firing Room 1 at the Launch Control Center, a heritage KSC facility also upgraded by the EGS team in preparation for the upcoming mission. Results of the test confirmed that the fill rise rate was acceptable, the tank pressurization sequence works and that only one of the two vaporizers was needed to accomplish pressurization.

Another system is “go” for the first integrated launch of SLS and the Orion spacecraft!