New Ground Launch Sequencer Software Demonstrated in Launch Control Center

NASA engineers and test directors gather in Firing Room 3 in the Launch Control Center at NASA's Kennedy Space Center in Florida, to watch a demonstration of the automated command and control software for the agency's Space Launch System and Orion spacecraft. In front, far right, is Charlie Blackwell-Thompson, Exploration Mission 1 launch director. Photo credit: NASA/Bill White
NASA engineers and test directors gather in Firing Room 3 in the Launch Control Center at NASA’s Kennedy Space Center in Florida, to watch a demonstration of the automated command and control software for the agency’s Space Launch System and Orion spacecraft. In front, far right, is Charlie Blackwell-Thompson, Exploration Mission 1 launch director. Photo credit: NASA/Bill White

A demonstration of the automated command and control software for NASA’s Space Launch System (SLS) rocket and Orion spacecraft, recently took place in Firing Room 3 in the Launch Control Center at the agency’s Kennedy Space Center in Florida. The software, called the ground launch sequencer, will be responsible for nearly all of the launch commit criteria during the final phases of launch countdowns.

The Ground and Flight Application Software Team, or GFAST, demonstrated the software for Charlie Blackwell-Thompson, launch director for the first integrated flight of the SLS and Orion spacecraft. Also attending were representatives from the NASA Test Director’s Office.

The software is in the advanced stages of development. It includes nearly all of the core capabilities required to support the initial use during Ignition Over-Pressure / Sound Suppression and follow-on tests through launch of the agency’s SLS rocket and Orion spacecraft. The suppression stage ensures the water dampening system initiates in the final second of launch countdown. It also produces the pattern and volume needed to dampen the pressure waves and acoustic environment caused by the firing of the SLS core stage RS-25 engines and solid rocket motors.

“We were pleased to be able to demonstrate the continued evolution of the ground launch sequencer for members of the launch team, and look forward to its first use in operations support,” said Alex Pandelos, operations project engineer for Launch Integration in the Ground Systems development and Operations Program (GSDO).

The software was developed by GSDO’s Command, Control and Communications teams at the center. Development of the software will continue, with a goal of beginning verification and validation of the software in summer 2017.

Crawler-Transporter 2 Takes Test Drive along Crawlerway

Crawler-transporter 2 with MLP-1 atop moves slowly along the crawlerway at Kennedy Space Center.NASA’s crawler-transporter 2 (CT-2) took a test drive along the crawlerway at Kennedy Space Center to determine the structural dynamics and loading environments of the crawler’s recent upgrades. The test was performed to ensure that the crawler is ready to support the first integrated flight of the agency’s Orion spacecraft atop the Space Launch System.

The unloaded CT-2 rolled from the crawler yard along the crawlerway to the Pad A/B split for the first leg of the trip and traveled back to the mobile launcher platform park site near the Vehicle Assembly Building. For the loaded test, the crawler picked up Mobile Launch Platform 1 at the park site and returned to the Pad A/B split. Engineers took measurements during the entire trek using accelerometers, strain gauges and pressure transducers. The data collected will be used to validate the dynamic model of the integrated SLS.

CT-2 is the vehicle that will carry the SLS rocket and Orion spacecraft on the mobile launcher to Pad B for launch. The behemoth vehicle recently was upgraded to support the heavier load of the SLS atop the mobile launcher.

Upgrades to the crawler included installation of new generators, gear assemblies, jacking, equalizing and leveling (JEL) hydraulic cylinders, roller bearings and brakes. Other systems also were upgraded.

The Ground Systems Development and Operations Program is overseeing upgrades to facilities and ground support equipment necessary to support the launch and deep space missions, including the Journey to Mars.

Photo credit: NASA/Leif Heimbold

First Umbilical Installed on Mobile Launcher for NASA’s Space Launch System and Orion

The OSMU is installed on the mobile launcher.The first launch umbilical for NASA’s Space Launch System (SLS) and Orion spacecraft was installed on the mobile launcher tower March 16 at the agency’s Kennedy Space Center in Florida. The Orion Service Module Umbilical, or OSMU, was installed high up on the tower at about the 260-foot level.

“Installation of the OSMU is a major milestone for the mobile launcher team,” said Sam Talluto, deputy project manager. “This is the first of multiple umbilicals and launch accessories that will be installed.”

The tower on the mobile launcher will be equipped with several connections, called launch umbilicals, which will connect to the SLS core stage and twin solid rocket boosters, the interim cryogenic propulsion stage and the Orion spacecraft. They will provide power, communications, coolant and fuel.

The OSMU will connect from the mobile launcher tower to the Orion service module. Prior to launch, the umbilical will transfer liquid coolant for the electronics and purge air/ GN2 for environmental control to the Orion service module that houses these critical systems to support the spacecraft. The umbilical also will provide purge air/GN2 for environmental control to the Launch Abort System. Before launch, the OSMU will tilt up and the umbilical lines will disconnect.

The first integrated launch of SLS and Orion, Exploration Mission 1, will send the spacecraft to a stable orbit beyond the moon. Orion will return to Earth and be recovered from the Pacific Ocean. The mission will demonstrate the integrated performance of the SLS rocket, Orion and ground support teams.

Photo credit: NASA/Leif Heimbold

Media View New Work Platforms for NASA’s Space Launch System

Media view new work platforms in Vehicle Assembly Building High Bay 3.Members of the news media recently viewed the ten levels of new work platforms inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Work to install the platforms came to conclusion Jan. 12 as the final work platform, A north, was lifted, installed and secured on its rail beam on the north wall of the high bay inside the iconic facility.

Twenty platform halves will surround NASA’s Space Launch System (SLS) rocket and the Orion spacecraft atop the mobile launcher and allow access during processing for missions, including the first flight test of Orion atop the SLS.

With the goal of being a multi-user facility, the new platforms were designed to be adjusted up and down, and in and out on their rail beams in order to accommodate the SLS and its solid rocket boosters, as well as other vehicles.

Design of the new platforms began in 2010. NASA awarded a contract to modify High Bay 3 to the Hensel Phelps Construction Co. of Greeley, Colorado, in March 2014. Hundreds of NASA and contractor workers were involved in the design, manufacture and installation of the platforms.

The platform levels are A, B, C, D, E, F, G, H, J and K. With the K-level being the lowest and the A-level the highest platforms.

The mobile launcher will be rolled into High Bay 3 in the fall for multi-element verification and validation testing with the platforms.

Photo credit: NASA/Kim Shiflett

Test of Launch Umbilicals at Halfway Point for Mobile Launcher System

Testing is complete on the Core Stage Forward Skirt Umbilical at Kennedy Space Center.
Engineers and technicians gather at the Launch Equipment Test Facility with a signed banner to mark testing complete on the Core Stage Forward Skirt Umbilical. Photo credit: NASA/Cory Huston

NASA reached the halfway point on testing of the launch umbilicals for its Space Launch System (SLS) rocket and Orion spacecraft at the Launch Equipment Test Facility at the agency’s Kennedy Space Center in Florida.

The Core Stage Forward Skirt Umbilical (CSFSU) underwent testing for four months. A team of engineers and technicians with the Engineering Directorate and the Ground Systems Development and Operations Program, along with support contractors, conducted the tests. The CSFSU was attached to a Vehicle Motion Simulator at the LETF and tests confirmed the CSFSU load limits, its ability to disconnect before liftoff and that it is functioning properly and ready to be installed on the mobile launcher.

The CSFSU will be located at about the 180-foot level on the mobile launcher tower, above the vehicle liquid oxygen tank. During processing, the umbilical will be mated to the core stage forward skirt to provide commodities to the SLS rocket, and then disconnect and swing away before launch. Its main purpose is to provide conditioned air and gaseous nitrogen to the SLS Core Stage Forward Skirt.

The umbilical was transported to the mobile launcher area in December, where it is being prepared for installation on the tower of the mobile launcher.

The other umbilicals which have been tested at the LETF and are now at the mobile launcher area are the Orion Service Module Umbilical, two Aft Skirt Electrical Umbilicals, two Aft Skirt Purge Umbilicals, and three of the eight Vehicle Support Posts.

NASA, Contractor Workers Sign Final Platform in Vehicle Assembly Building

Workers sign final platform in the Vehicle Assembly Building.NASA Kennedy Space Center’s Engineering Directorate coordinated a platform beam signing event to celebrate the NASA and contractor team’s last several years of study, design, construction and installation of 20 new work platforms for NASA’s Space Launch System in the Vehicle Assembly Building (VAB).

Workers involved in the High Bay 3 platform project had the opportunity to sign one of the beams of the final work platform, A North, in the transfer aisle of the VAB.

The A platforms are the topmost and final level of 10 levels of work platforms that will surround and provide access to the agency’s Space Launch System rocket and Orion spacecraft. Orion’s first uncrewed flight atop the rocket is scheduled for late 2018.

The Ground Systems Development and Operations Program, with support from the Engineering Directorate, is overseeing upgrades and modifications to the VAB, including installation and testing of the new work platforms.

Photo credit: NASA/Dimitri Gerondidakis

Final Work Platform Lifted into Place for NASA’s Space Launch System

Platform A North InstallationThe final work platform, A north, was lifted, installed and secured on its rail beam on the north wall of High Bay 3 inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida on Jan. 12.

The installation of the final topmost level completes the 10 levels of work platforms, 20 platform halves altogether, that will surround NASA’s Space Launch System rocket and the Orion spacecraft and allow access during processing for missions, including the first uncrewed flight test of Orion atop the SLS rocket in 2018.

The A platforms will provide access to the Orion spacecraft’s Launch Abort System for Orion lifting sling removal and installation of the closeout panels. The Ground Systems Development and Operations Program, with support from the center’s Engineering Directorate, is overseeing upgrades to the VAB, including the installation of the work platforms.

Photo credit: NASA/Frank Michaux

Final Work Platform Arrives for NASA’s Space Launch System

Work platform A north arrived at Kennedy Space Center in Florida on Dec. 13.The final work platform for NASA’s Space Launch System arrived Dec. 13 at the agency’s Kennedy Space Center in Florida. The second half of the A-level platforms, A north, was transported to the center by heavy-lift truck from Tillett Heavy Hauling in Titusville, Florida, and delivered to the Vehicle Assembly Building (VAB) staging area.

The platform will remain in the staging area for prep work before it is moved into the transfer aisle of the VAB. The first half of the A-level platforms, A south, arrived at the center Nov. 28. The south platform will be installed in High Bay 3 on Dec. 22. The north platform will be installed in late January 2017.

The A-level platforms are the topmost platforms for High Bay 3. The two halves will provide access to the Orion spacecraft’s Launch Abort System (LAS) for Orion Lifting Sling removal and installation of the closeout panels. Testing of the Launch Abort System Antenna also is performed on this level.

A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing. NASA is preparing for the launch of Orion atop the SLS rocket from Launch Pad 39B in 2018.

Photo credit: NASA/Cory Huston

Mobile Launcher will Receive first Umbilicals for NASA’s Deep Space Missions

A vehicle support post is moved to the Mobile Launcher Yard at Kennedy Space Center in Florida.
A vehicle support post for NASA’s Space Launch System is moved from the Launch Equipment Test Facility to the Mobile Launcher Yard at Kennedy Space Center in Florida. Photo credit: NASA/Ben Smegelsky

Several of the umbilicals that will support the launch of NASA’s Space Launch System (SLS) rocket atop the mobile launcher were transported from the Launch Equipment Test Facility to the Mobile Launcher Yard and staging area at the agency’s Kennedy Space Center in Florida. They will be prepped for installation on the mobile launcher.

The mobile launcher tower will be equipped with several launch umbilicals, which connect to the SLS core stage and twin solid rocket boosters, the interim cryogenic propulsion stage and the Orion spacecraft. They will provide power, communications, coolant and fuel. Several other accessories will provide access and stabilization to the rocket and spacecraft.

The two aft skirt electrical umbilicals and one vehicle support post were transported by flatbed truck from the test facility. The two aft skirt umbilicals will be prepped and installed on the deck of the mobile launcher in the coming weeks. Work will begin to prep the first vehicle support post while the remaining seven posts undergo testing at the Launch Equipment Test Facility before being shipped to the mobile launcher. The installation work will be performed by the construction contractor JP Donovan Construction.

The two umbilicals will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the SLS rocket until it lifts off from the launch pad. The umbilicals will act like a telephone line and carry a signal to another subsystem on the mobile launcher called the launch release system. This system will distribute the launch signal to the rest of the launch accessories and the SLS boosters will actually initiate the launch release command.

There are a total of eight posts that will support the load of the solid rocket boosters, with four posts for each of the boosters. The support posts are five feet tall and weigh about 10,000 pounds each. They will be located on the deck of the mobile launcher and will be instrumented with strain gages to measure loads during vehicle stacking, integration, rollout and launch. The posts will structurally support the SLS rocket through countdown and liftoff.

NASA’s SLS rocket is scheduled to launch with the Orion spacecraft atop from Launch Pad 39B in late 2018. The mission will send Orion on a path thousands of miles beyond the moon over a course of three weeks before the spacecraft returns to Earth and safely splashes down in the Pacific Ocean. The mission will be the first in a series of the proving ground as NASA prepares for the Journey to Mars.

Team Celebrates Success of Orion Underway Recovery Test 5

The Orion Underway Recovery Test 5 team gathered to celebrate the successful completion of the test during an event at NASA's Kennedy Space Center in Florida.
The Orion Underway Recovery Test 5 team gathered to celebrate the successful completion of the test during an event at NASA’s Kennedy Space Center in Florida. At far left is Melissa Jones, Orion Landing and Recovery director. Photo credit: NASA/Ben Smegelsky

The Orion Underway Recovery Test 5 (URT-5) team recently celebrated the completion of the test during a gathering hosted by the Ground Systems Development and Operations Program (GSDO) and the Engineering Directorate at NASA’s Kennedy Space Center in Florida.

URT-5 team members included NASA’s GSDO, Kennedy’s Engineering Directorate, contractors with the Test and Operations Support Contract and Engineering Services Contract, Orion representatives, the team from the Neutral Buoyancy Laboratory at Johnson Space Center in Houston, and U.S. Air Force Detachment 3 from the 45th Space Wing at nearby Patrick Air Force Base.

During URT-5 in October, the team practiced recovering a test version of the Orion crew module in the Pacific Ocean, off the coast of California, and guiding it into the well deck of the USS San Diego. Over several days, the team demonstrated and evaluated new recovery processes, procedures, hardware and personnel that will be necessary to recover Orion after its first flight test on NASA’s Space Launch System (SLS) rocket.

“URT-5 proved to be a really valuable test for us as we evolve our ground support equipment and recovery procedures to one day safely recover our astronauts and crew module from deep space,” said Mike Bolger, GSDO Program manager. “It is a complex procedure and the conditions on the Pacific Ocean can be daunting. But this team performed flawlessly.”

Landing and Recovery Director Melissa Jones, with GSDO, thanked the team for countless hours of hard work and hundreds of newly developed parts that contributed to the success of the test.

“This test was the first time the Landing and Recovery Team has been able to consistently demonstrate control of the test capsule in the well deck of the ship,” Jones said.

The team will fine-tune their strategy, make some equipment adjustments and return to the open water for another test late next year.

NASA’s Orion spacecraft is scheduled to launch atop the SLS on Exploration Mission 1 in late 2018. EM-1 will send Orion on a path thousands of miles beyond the moon over a course of three weeks, farther into space than human spaceflight has ever traveled before. The spacecraft will return to Earth and safely splash down in the Pacific Ocean. The mission will advance and validate capabilities required for the Journey to Mars.