A Brief Look at CRS-7

spacex_launchThe CRS-7 mission will be the seventh operational cargo delivery flight by SpaceX to the International Space Station. It will carry a host of experiments, supplies and equipment for the crew of the orbiting laboratory. It also will ferry the first of two Boeing-built International Docking Adapters that will be used by Commercial Crew spacecraft in the future when they dock at the station.

Launch of CRS-7 from SpaceX’s facilities at Cape Canaveral Air Force Station in Florida is targeted for June 26 at 11:09 a.m. We will cover the countdown, launch and ascent into orbit here on the NASA Blog and on NASA TV at www.nasa.gov/ntv.

Mourning Jack King, Apollo ‘Voice of Launch Control’

John W. (Jack) King, former chief of Public Information at NASA’s Kennedy Space Center, died June 11, 2015 He was 84. A resident of Cocoa Beach, Fla., King worked in the space agency’s Public Affairs office from 1960 until 1975. He returned to Kennedy in 1997, working for space shuttle contractor United Space Alliance until his 2010 retirement.

King served as manager of press operations for 12 years, spanning the Mercury, Gemini and Apollo programs. During that time, he was the “voice of launch control” for virtually every human mission from Gemini 4 to Apollo 15. He described countdown events as millions around the world watched the liftoff of the Saturn V rocket that carried the Apollo 11 astronauts to the moon.

Read the full story at http://go.nasa.gov/1L3NDMh.

All Kennedy Facilities Open After Wednesday Storms

A severe thunderstorm cell moved through Kennedy Space Center at approximately 3 p.m. on Wednesday, June 10 with a maximum wind speed reaching 84 knots (96 mph) in the Kennedy Industrial Area.

A severe thunderstorm watch had been issued shortly after 8 a.m. for the period of 3 to 8 p.m. and included Strong Wind and Damaging Wind Warnings at 1:30 p.m. and 2:30 p.m. respectively.

Most damage was confined to the KSC Industrial Area, particularly the NASA Headquarters Building. Approximately ten building windows were cracked, there were numerous roof and window leaks and water intrusion, and some inside ceilings in offices collapsed. In the area of the Central Campus construction site between the Headquarters Building and the Operations and Checkout Building, temporary fencing and barricades were blown over, and a construction trailer moved horizontally approximately 100 feet into a parked vehicle. Also, approximately 15-20 cars were damaged in the front and rear parking lots of the Headquarters Building including some with windows blown out.

Around Kennedy, limbs and small trees were down and there was ponding or minor flooding and some traffic lights out. There was no damage to operational facilities or flight hardware. Once the storm had passed and it was safe to initiate temporary repairs, crews worked through the evening to ensure a safe work place for personnel returning to work this morning. All Kennedy facilities are open and operating today.

SpaceX Work Continues on 39A Hangar

Spx39Ahangar

 

SpaceX released a new photo showing the progress the company is making on an assembly hangar at Kennedy’s historic Launch Complex 39A. The company says the building will be big enough to house five Falcon rockets at once. The launch pad is being outfitted for missions by the Falcon Heavy and for Commercial Crew flights using the Falcon 9 rocket launching Crew Dragons to the International Space Station with NASA astronauts onboard.

No Recess for Attorney of Year

Steve_Horn
By Steven Siceloff

Three months of seven-day work weeks including a month of 17-hour days punctuated the end of 2014 for Steven Horn. As assistant chief counsel at Kennedy, Horn worked to defend the decisions by NASA’s Commercial Crew Program to award contracts to Boeing and SpaceX under the Commercial Crew Transportation Capability phase. The effort was intense and draining, but equal parts rewarding for the lawyer who has since been named the agency’s Attorney of the Year.

“This procurement was very complex, given the parallel space act agreements and phased acquisition and all,” Horn said. “We have to bring the level of expertise that the engineers have down to a more readable level when making findings when they are going to be reviewed by someone who doesn’t necessarily have that technical background. That can be difficult at times.”

Horn’s legal career began following his graduation from the University of Florida’s Levin College of Law. After a couple years in private practice, Horn joined the Air Force where he worked in the Judge Advocate General department before going to Tinker Air Force Base in Oklahoma, where contracts and labor-related issues became his specialty. Having traveled the world in the Air Force, Horn opted to settle down in Florida, and came to work for NASA at Kennedy Space Center in 1998.

“Every day here is a challenge, whether it’s contracts, space act agreements or how we’re commercializing property that NASA has no present use for,” Horn said. “The most rewarding thing for me, bar none, is the people I get to work with. There are some amazing engineers out here, I’m not just saying that. They blow me away every day. I like working with people smarter than me and there are a heck of a lot of people out here smarter than me and it motivates me to bring my game up. That’s what I get a kick out of. It’s that interaction with people and helping create solutions.”

Horn is now the primary legal voice for Commercial Crew, beginning that role two years ago when he became a part of the source board to acquire services for the first American-made, human-rated spacecraft since the space shuttle. Then he helped judge how proposals by aerospace companies stacked up against NASA’s requirements for Commercial Crew. Ultimately, the source board made the evaluations before NASA’s hierarchy made the final selection of Boeing and SpaceX.

“The Source Evaluation Board chairwoman, Maria Collura, in my almost 30 years of work, is easily the best that I’ve ever come across,” Horn said. “She was the glue that held the entire team together.”

A couple weeks later, a protest lodged against the decision sent the board and Horn into justification mode. By the time it was complete, more than 160,000 pages had been gathered and reviewed. Ultimately, the Government Accountability Office agreed with NASA’s rationale and approved the contract awards.

“I think the day the announcement was made to select two companies, it showed that all the work we had done for the past year and half as a team was correct,” Horn said. “The day that we got the successful decision was a good day — a very good day for myself and for NASA.”

Although getting to this point with the contracts awarded and decision upheld has been a lot of work, Horn said it will be the next three years of development progress, test flights and certification that tells the team whether they got it right.

“The work’s not done,” Horn said. “Selecting the contractor is important, but administering the contract correctly matters just as much. We have a goal of 2017 for these flights, but it’s just a goal. We need to make sure they meet NASA’s requirements and are safe and cost-effective.”

 

Commercial Crew Rotation Mission in Motion

4-astros_webfeature-graphicNASA took another step toward returning America’s ability to launch crew missions to the International Space Station from the United States in 2017. Commercial Crew ordered its first crew rotation mission from The Boeing Company. SpaceX is expected to receive its first order later this year. Determination of which company will fly its mission to the station first will be made at a later time.

“Final development and certification are top priority for NASA and our commercial providers, but having an eye on the future is equally important to the Commercial Crew and station programs,” said Kathy Lueders, manager of Commercial Crew. “Our strategy will result in safe, reliable and cost-effective crew missions.”

Missions flown to the station on Boeing’s CST-100 and SpaceX’s Crew Dragon spacecraft will restore America’s human spaceflight capabilities and increase the amount of scientific research that can be conducted aboard the orbiting laboratory. A standard mission to the station will carry four NASA or NASA-sponsored crew members and about 220 pounds of pressurized cargo. The spacecraft will remain at the station for up to 210 days and serve as an emergency lifeboat during that time.

“Commercial Crew launches are critical to the International Space Station Program because it ensures multiple ways of getting crews to orbit,” said Julie Robinson, International Space Station chief scientist. “It also will give us crew return capability so we can increase the crew to seven, letting us complete a backlog of hands-on critical research that has been building up due to heavy demand for the National Laboratory.”

Astronauts to Join Hall of Fame on May 30

In this image from March 2002, John M. Grunsfeld is shown in space shuttle Columbia's cargo bay.Four accomplished NASA astronauts soon will be inducted into the U.S. Astronaut Hall of Fame.

Joining the hall of fame this year are NASA’s associate administrator for the Science Mission Directorate John Grunsfeld, and former astronauts Steve Lindsey, Kent Rominger, and M. Rhea Seddon. Their induction brings the total number of space explorers enshrined to 91.

NASA Television will provide live coverage of the induction ceremony at 2 p.m. EDT on Saturday, May 30.

For more information, go to http://go.nasa.gov/1QalTnm.

Robotic Miners Compete at Kennedy

Inside the robot pit preparation facility at NASA's Kennedy Space Center Visitor Complex in Florida, college team members look over their custom-made robot in preparation for NASA's Robotic Mining Competition.
Inside the robot pit preparation facility at NASA’s Kennedy Space Center Visitor Complex in Florida, college team members look over their custom-made robot in preparation for NASA’s Robotic Mining Competition.

University teams and their mining robots have descended on the Kennedy Space Center Visitor Complex this week for the 2015 NASA Robotic Mining Competition.

Teams have designed and built remote-controlled mining robots that can traverse the simulated Martian terrain features and excavate simulated regolith. During the competition, the teams’ robots will go head-to-head to determine which machine can collect and move the most regolith within a specified amount of time.

The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. The project provides a competitive environment to foster innovative ideas and solutions that potentially could be applied to future NASA missions.

Sieck Enjoys Launch Sans Rocket

Legendary former launch director Bob Sieck has seen countless launches of all sorts from Florida’s Space Coast during a distinguished career that began during Gemini and lasted through most of the space shuttle era. But watching today’s test of the SpaceX Crew Dragon from Kennedy Space Center was substantially different, he said.

“First time I watched the launch of a spacecraft – without the benefit of a rocket!”

In case you are wondering where prior crew escape systems were tested, the launch escape systems for Mercury capsules were tested at Wallops Island, Virginia, and the Apollo escape tower was tested at White Sands, New Mexico. Gemini used ejection seats for its astronauts. None have been tested at Cape Canaveral until today.

SpaceX Demonstrates Astronaut Escape System for Crew Dragon Spacecraft

17364986436_93808ae456_oA loud whoosh, faint smoke trail and billowing parachutes marked a successful demonstration Wednesday by SpaceX of its Crew Dragon spacecraft abort system – an important step in NASA’s endeavor to launch crews to the International Space Station from U.S. soil. The successful test of the spacecraft’s launch escape capabilities proved the spacecraft’s ability to carry astronauts to safety in the unlikely event of a life-threatening situation on the launch pad.

The Crew Dragon simultaneously fired its eight SuperDraco engines at 9 a.m. EDT and leapt off a specially built platform at Cape Canaveral Air Force Station’s Space Launch Complex 40 in Florida. The engines fired for about six seconds, instantly producing about 15,000 pounds of thrust each and lifting the spacecraft out over the Atlantic Ocean before jettisoning its trunk, as planned, and parachuting safely into the ocean. The test lasted about two minutes from engine ignition to splashdown.

“This is a critical step toward ensuring crew safety for government and commercial endeavors in low-Earth orbit,” said Kathy Lueders, manager of NASA’s Commercial Crew Program. “Congratulations to SpaceX on what appears to have been a successful test on the company’s road toward achieving NASA certification of the Crew Dragon spacecraft for missions to and from the International Space Station.”

The flight test is a vital milestone in the company’s development effort and furthers its plan to meet a major requirement for the next generation of piloted spacecraft — an escape system that can quickly and safely take crew members away from their rocket while on the pad and through their ascent to orbit. SpaceX can use the test data to help refine its aerodynamic and performance models, and its design, to help ensure crew safety throughout all phases of flight.

SpaceX was founded with the goal of carrying people to space, and today’s pad abort test represented an important milestone in that effort,” said Gwynne Shotwell, SpaceX president and chief operating officer. “Our partnership with NASA has been essential for developing Crew Dragon, a spacecraft that we believe will be the safest ever flown. Today’s successful test will provide critical data as we continue toward crewed flights in 2017.”

The test was the first with a full-size developmental spacecraft using a complete set of eight SuperDraco engines in the demanding real-world conditions of a pad abort situation. SpaceX built the SuperDracos for pad and launch abort use. Each engine, the chambers of which are 3-D printed, burns hypergolic propellants monomethylhydrazine and nitrogen tetroxide.

More than 270 special instruments, including temperature sensors and accelerometers, which are instruments that measure acceleration, were strategically placed in and around the vehicle to measure a variety of stresses and acceleration effects. A test dummy, equipped with sensors, went along for the ride to measure the effects on the human body. To further maximize the value of the test, weights were placed inside the capsule at crew seat locations to replicate the mass of a crewed launch.

The trunk, an unpowered cylinder with stabilizing fins, detached from the spacecraft when it reached maximum altitude and fell back to Earth, while the capsule rotated on as planned for a couple seconds before unfurling its drogue parachutes, which then deployed the main parachutes. Boat crews have begun the process of retrieving the Crew Dragon from the ocean and returning it to land for further analysis.

Spacecraft development and certification through the Commercial Crew Program is performed through a new arrangement that encourages innovation and efficiency in the aerospace industry, bringing to the process the space agency’s expertise in the form of safety and performance requirements for the spacecraft, boosters and related systems.

The pad abort test is a payment milestone funded by the Commercial Crew Program under a partnership agreement established with the company in 2012. The agency awarded contracts last year to Boeing and SpaceX to build their respective systems for flight tests and operational missions to the space station. Known as Commercial Crew Transportation Capability (CCtCap) contracts, the awards allow continued work on Boeing’s CST-100 and SpaceX’s Crew Dragon at a pace that is determined by their respective builders, but that also meets NASA’s requirements and its goal of flying crews in 2017.

“Our partners have met many significant milestones and key development activities so far, and this pad abort test provides visual proof of one of the most critical safety requirements — protecting a crew in the event of a major system failure,” Lueders said.

NASA already is preparing the space station for commercial crew spacecraft and the larger station crews that will be enabled by SpaceX’s Crew Dragon and Boeing’s CST-100. NASA plans to use the new generation of privately developed and operated spacecraft to carry as many as four astronauts each mission, increasing the station crew to seven and doubling the amount of science that can be performed off the Earth, for the Earth.