NOAA’s GOES-T Launch Now Targeting Jan. 8, 2022

Artist's rendering of GOES-R.
Artist’s rendering of GOES-R. Credits: NASA

NASA and the National Oceanic and Atmospheric Administration (NOAA) are now targeting Jan. 8, 2022, for the launch of the Geostationary Operational Environmental Satellite T (GOES-T) mission. The launch was previously planned for Dec. 7, 2021.  NASA, NOAA, and United Launch Alliance (ULA) coordinated the new target date to optimize launch schedules for missions flying from Space Launch Complex-41.

The GOES-T satellite is part of the GOES-R series that will maintain the two-satellite system extending the operational lifetime through December 2036.The GOES satellite network helps meteorologists observe and predict local weather events, including thunderstorms, tornadoes, fog, hurricanes, flash floods and other severe weather.

GOES-T will launch from Cape Canaveral Space Force Station in Florida on a United Launch Alliance Atlas V 541 rocket. The two-hour launch window will open at 4:33 p.m. EST. This launch is being managed by NASA’s Launch Services Program.

NOAA manages the GOES-R Series Program through an integrated NOAA-NASA office, administering the ground system contract, operating the satellites, and distributing their data to users worldwide. NASA’s Goddard Space Flight Center oversees the acquisition of the GOES-R spacecraft and instruments. Lockheed Martin designs, creates, and tests the GOES-R series satellites. L3Harris Technologies provides the main instrument payload, the Advanced Baseline Imager, along with the ground system, which includes the antenna system for data reception.

Looking forward, NOAA is working with NASA on the next-generation geostationary satellite mission called GeoXO, which will bring new capabilities in support of U.S. weather, ocean, and climate operations in the 2030s. NASA will manage the development of the satellites GeoXO satellites and launch them for NOAA.

Space Weather Focused ELaNa CubeSat Deploys from Cygnus Spacecraft

The Cygnus space freighter from Northrop Grumman is pictured moments after its capture with the Canadarm2 robotic arm.
The Cygnus space freighter from Northrop Grumman is pictured moments after its capture with the Canadarm2 robotic arm. Cygnus and the International Space Station were orbiting 271 miles above the Indian Ocean south of Australia at the time this photograph was taken. Photo credit: NASA

The sole CubeSat of the 33rd Educational Launch of Nanosatellites (ELaNa) mission was deployed into space at 6:50 p.m. EDT June 29 from Northrop Grumman’s Cygnus spacecraft hours following its departure from the International Space Station.

The CubeSat, Ionosphere-Thermosphere Scanning Photometer for Ion-Neutral Studies (IT-SPINS), was stowed within the Nanoracks CubeSat Deployer (eNRCSD) mounted on the exterior of the S.S. Katherine Johnson Cygnus spacecraft. Once the Cygnus departed the space station, it remained in orbit to deploy a total of 5 cube satellites, including IT-SPINS, which was deployed into a free-flying orbit at an altitude between 304 and 210 miles (490 and 500 kilometers) above Earth’s surface.

A Nanoracks employee performing the final integration of IT-SPINS into the E-NRCSD
Jake Cornish, a Nanoracks employee, performs the final integration of the Ionosphere-Thermosphere Scanning Photometer for Ion-Neutral Studies (IT-SPINS) CubeSat into the E-NRCSD. Photo credit: Nanoracks

This mission aims to improve space weather forecasting related to dynamic processes in Earth’s ionosphere. The 3U CubeSat is equipped with a sensitive photometric instrument to remotely sense ultraviolet emissions produced when oxygen ions combine with electrons in the ionosphere. This investigation plans to reveal the dynamics of a physical boundary region in Earth’s ionosphere where the oxygen-dominated ionosphere becomes proton dominated with increasing altitude, in a layer known as the Topside Transition Region (TTR).

IT-SPINS launched aboard Northrop Grumman’s 15th NASA contracted cargo resupply mission to the International Space Station from Wallops Flight Facility in Virginia on February 20.

IT-SPINS is the twelfth in a series of CubeSats developed by Montana State University’s Space Science and Engineering Laboratory to advance CubeSat capabilities and conduct scientific investigations to answer question in the Geospace sciences. This mission is sponsored by the National Science Foundation, which has supported it during its development and is supporting the beginning of operations. IT-SPINS was selected by NASA’s CubeSat Launch Initiative (CSLI), which is managed by NASA’s Launch Services Program (LSP) based at Kennedy Space Center. Since its inception in 2010, CSLI has selected 202 CubeSat missions from 42 states, the District of Columbia, and Puerto Rico, and 119 CubeSat projects have launched into space through ELaNa rideshare opportunities.

Stay connected with the ELaNa mission on social media by following LSP at @NASA_LSP on Twitter and @NASALSP on Facebook.

Rocket Women: Q&A with Mechanical Interface Systems Team Lead Notlim Burgos

During Women’s History Month, we reflect on the contributions of trailblazers at NASA who inspire the next generation of women. As we continue to celebrate women’s accomplishments, meet Notlim Burgos, Mechanical Interface Systems Team Lead for NASA’s Launch Services Program (LSP), based at the agency’s Kennedy Space Center in Florida.

Burgos supports NASA’s Double Asteroid Redirection Test (DART) Mission, which is the agency’s first planetary defense mission, and Landsat 9, the ninth Earth-observing satellite mission in the Landsat series. She was inspired from a young age to pursue STEM, leading to her 15-year career at NASA. Hear Burgos’ story and her advice for future generations.

Notlim Burgos was inspired from a young age to pursue STEM, leading to her 15-year career at NASA.

What do you enjoy most about your job?

I love working alongside a range of amazing people who bring diverse expertise and perspectives, which provide a wide variety of solutions for the challenges that we face daily I learn something new from everybody every day. I enjoy having the opportunity to follow the spacecraft and the launch vehicles through the whole mission lifecycle.

Who inspires you most?

My family – especially my nieces and goddaughter. At a young age, they are demonstrating a special interest in STEM and space. One wants to be an astronaut and dreams of going to the Moon and to Mars. When I see their enthusiasm and think of the possibilities of what they can become, it inspires me to want to be the best role model that I can be. I want them to feel encouraged to follow their dreams and see the many career opportunities that women can pursue.

When did you first realize you had a passion for STEM?

I found my passion for STEM when I was in the ninth grade on an educational trip during which we visited Disney World and Kennedy. We got behind-the-scene tours where we met Disney “Imagineers,” the park’s engineers, who explained how they used the power of science to develop park attractions. That gave me a glance for the first time at how much you can do with STEM.

At Kennedy, I saw the Shuttle at Launch Pad 39A, and I was flabbergasted. We slept under the 363-foot Saturn V moon rocket at the Apollo/Saturn V Center. Also, we met astronaut Charles Duke, the youngest person to walk on the Moon. These experiences convinced me that traveling through space was possible. At that moment, I knew that I wanted to be part of NASA’s team to see how far we can reach. When I returned from the trip, I told my parents I wanted to be a NASA engineer!

What advice would you give to young girls considering a STEM career?

Challenge yourself and don’t be afraid of failure. Always be yourself, be passionate, and always do your best. You may face challenges that seem impossible to conquer, but believe that you can do anything that you set your mind to. After failing a math course early in engineering school, I told my dad I didn’t think engineering was for me. I will never forget my dad’s words. He said, “You knew engineering wasn’t going to be easy. Remember where you want to be – NASA! I know you can do it; you just need to study harder.”

I appreciated his kind words and unconditional support. I retook and passed the course the following semester, and I graduated engineering school with honors. The easy route was giving up; the hardest was facing the challenges with conviction in pursuit of my dreams. I will forever be grateful for my father’s encouragement during those challenging times.

What advice would you give someone who wants to work at NASA?

A common misconception is that NASA only hires STEM professionals. My advice is to research the different opportunities that NASA offers. There are opportunities for professionals with various levels of expertise and experience. Become familiar with the NASA centers, the Pathways Program, and usajobs.com. The Pathways Program offers opportunities to work at NASA while attending school, and through usajobs.com you can build your resume and apply for positions. Lastly, do not give up, be patient but persistent; you never know when you are going to receive that call for an interview.

What is your favorite part about working for NASA?

My favorite part is that I can leverage my experiences to mentor others. I owe part of my success to my mentors. It is important to me to share what I have learned so that others achieve their goals. There is nothing more rewarding than to see somebody succeed and see how they evolve into influential mentors for others. I also enjoy supporting educational outreach, which is a great platform to inspire others to pursue careers in STEM.

Rocket Women: Q&A with Diana Calero, Launch Vehicle Certification Manager

Diana Calero, of NASA’s Launch Services Program, works with emerging commercial space flight launch companies as they develop their launch vehicles. Photo credit: NASA

NASA’s Launch Services Program (LSP), based at Kennedy Space Center in Florida, is responsible for pairing the agency’s scientific and robotic missions with launch services from commercial partners. From launching Mars rovers to Earth-observing satellites, LSP has enabled exploration since 1998. As the nation celebrates Women’s History Month, get to know one woman making LSP missions possible.

With a career spanning 30 years, Diana Calero, launch vehicle certification manager, works with emerging commercial space flight launch companies as they develop their launch vehicles, such as Blue Origin’s New Glenn, ULA’s Vulcan, and SpaceX’s Falcon Heavy. Her responsibility as the certification manager is to work closely with these companies to assure their launch vehicles can be certified to launch future NASA payloads.

Additionally, Calero is working on the James Webb Space Telescope (JWST) as the LSP mission manager. In this role, she is providing expertise to integrate and launch the telescope on a European Ariane 5 launch vehicle.

Diana Calero is working on the James Webb Space Telescope as the Launch Services Program mission manager. Photo credit: NASA/Tony Gray

What do you enjoy most about your job?

I enjoy being able to learn about the new launch vehicles that are being designed by private companies that will eventually provide NASA with more flexibility in accessing space. The highlight of my job, and what I have always enjoyed, is working with such a large group of diverse individuals from all over the world. This includes launch vehicle contractors, spacecraft customers and builders, inter-agency personnel, foreign governments and industry. I enjoy getting to know different people, their customs, and learning from them.

Who inspires you most?

I’m constantly being inspired with every mission we launch, knowing that I had a role to play with each success and, more importantly, that it helped advance technology and well-being in our world.

When did you first realize you had a passion for STEM?

As early as elementary school, science and math grasped my curiosity. I always wanted to know how and why things worked. It was not surprising that my favorite television show was Star Trek, where I envisioned myself on that spaceship exploring and learning.

What advice would you give to young girls considering a career in STEM?

Take as many challenging science and math classes as you can. Consider involvement in school clubs that work in STEM related activities, such as robotics. Be curious about everything, and ask lots of questions. Always know that you can do whatever you set your mind to, and don’t let anyone make you feel that you can’t.

What advice would you give someone who wants to work at NASA?

As early as high school, inquire within multiple technical companies about performing an internship. NASA has a great program that allows you to work for them while in school, and that can help steer you into the field you want to study.

What types of challenges have you faced in your career, and how have you overcome them?

The challenge that I enjoy over and over in my career is becoming part of a new team and helping it reach goals that were thought to be unachievable. The diverse teams that I have been fortunate to be a part of bring different personalities, backgrounds, culture, work experience, capabilities and ideas. Being able to discern these qualities and use them as strengths within the team have allowed them to be incredibly successful and bring about amazing results.

What is your favorite part about working for NASA?

Knowing that my work makes an impact in our nation’s pursuit of science exploration.

Delta II Added to Historic Line-up at Kennedy Space Center Visitor Complex Rocket Garden

A ribbon-cutting ceremony welcomes the last United Launch Alliance Delta II rocket to the lineup of historic launch vehicles in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida, on March 23, 2021. Cutting the ribbon, from left are Kennedy Space Center Director Bob Cabana, Tim Dunn, launch director, Launch Services Program, and Therrin Protze, chief operating officer, Delaware North/KSCVC.
A ribbon-cutting ceremony welcomes the last United Launch Alliance Delta II rocket to the lineup of historic launch vehicles in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida, on March 23, 2021. Cutting the ribbon, from left are Kennedy Space Center Director Bob Cabana, Tim Dunn, launch director, Launch Services Program, and Therrin Protze, chief operating officer, Delaware North/KSCVC. Photo credit: NASA/Kim Shiflett

The last United Launch Alliance (ULA) Delta II rocket became a permanent resident of the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida on March 23, 2021. Representatives from the Visitor Complex, ULA, Kennedy Space Center, NASA’s Launch Services Program, and the 45th Space Wing gathered for a ribbon cutting to commemorate the addition of the rocket to the line-up.

During a ribbon-cutting ceremony, the last United Launch Alliance Delta II rocket joins the lineup of historic launch vehicles in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida, on March 23, 2021.
During a ribbon-cutting ceremony, the last United Launch Alliance Delta II rocket joins the lineup of historic launch vehicles in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida, on March 23, 2021. Photo credit: NASA/Kim Shiflett

“It’s great having this ULA Delta II take its place among the other historic vehicles in our Rocket Garden,” said Kennedy Space Center Director Bob Cabana. “The Delta II launched so many critical NASA science missions throughout our solar system as well as to planet Earth, and now it begins its second career on a mission of inspiration for all our future rocket scientists and engineers visiting the Kennedy Space Center.”

Delta II took its place among iconic giants, joining an original Delta, Mercury-Redstone, Mercury-Atlas, Gemini-Titan, the Junos, Atlas-Agena and Saturn 1B.

Following the Delta II’s final mission in 2018, ULA selected Kennedy’s Visitor Complex to receive a remaining vehicle for an outdoor display to inspire current and future generations to learn about the rocket’s history.

“Today is a historic day for our ULA team. We are excited to honor the legacy of this rocket that was so instrumental in delivering critical missions for NASA, the Department of Defense and commercial customers,” said Ron Fortson, director and general manager of United Launch Alliance, “Today we honor not only the Delta II’s historical impact, but also the men and women who designed, built, and launched it for nearly three decades.”

For nearly 30 years, the Delta II was the industry workhorse for NASA and civilian scientists, the U.S. military, and commercial clients. The Delta II launched more than 230 satellites on 155 flights to deploy the Global Positioning System (GPS), explore the solar system, and serve the medium-class commercial space launch market. Delta II soared into space from both coasts of the United States, launching from two side-by-side pads at Cape Canaveral’s Space Launch Complex (SLC)-17 in Florida, and the SLC-2 at Vandenberg Air Force Base in California. NASA’s Launch Services Program launched the ICESat-2 spacecraft on the final Delta II launch on Sept. 15, 2018, from Vandenberg.

“I was excited to see Delta II in the Rocket Garden against a beautiful blue sky. I am so thankful for the ULA/Delaware North collaboration that made this display possible,” said Tim Dunn, Launch Services Program launch director. “When I think of Delta II, I think of the launch team, the engineers, analysts, and technicians who contributed to this rocket’s unprecedented record of success, consistent performance, and its appropriate nickname, ‘The Workhorse.’ I believe the success of this rocket has left a huge ripple effect on the launch systems we have today.”

McDonnell Douglas created the rocket in the late 1980s to fulfill the U.S. Air Force’s need for a launch vehicle to carry the GPS first generation of operational satellites into space and create a worldwide precision navigation network.

ELaNa 20 CubeSats Deployed

Virgin Orbit’s LauncherOne system undergoes final preparations on a taxiway at Mojave Air and Space Port ahead of the company’s Launch Demo 2 mission. Taken in late December 2020. Photo: Virgin Orbit/Greg Robinson.
Virgin Orbit’s LauncherOne system undergoes final preparations on a taxiway at Mojave Air and Space Port ahead of the company’s Launch Demo 2 mission. Taken in late December 2020. Photo: Virgin Orbit/Greg Robinson.

Today at approximately 3:35 p.m. ET (12:35 p.m. PT), 10 CubeSats began deploying from Virgin Orbit’s LauncherOne Rocket into low-Earth Orbit as part of the Educational Launch of Nanosatellites (ELaNa) 20 mission. Virgin Orbit’s 747-00 carrier, Cosmic Girl, took off from the Mojave Air and Space Port in California at 1:38 p.m. ET (10:38 a.m. PT) today carrying the LauncherOne Rocket and the 10 small research satellites.

CubeSats are a cornerstone in the development of cutting-edge technologies like laser communications, satellite-to-satellite communications, and autonomous movement. The nine CubeSat missions in this launch were developed by the following universities and one NASA center:

  • CACTUS-1 – Capitol Technology University, Laurel, Md.
  • CAPE-3 – University of Louisiana at Lafayette
  • EXOCUBE – California Polytechnic State University, San Luis Obispo
  • MiTEE – University of Michigan, Ann Arbor, Mich.
  • PICS (two CubeSats) – Brigham Young University, Provo, Utah
  • PolarCube – University of Colorado at Boulder
  • Q-PACE – University of Central Florida, Orlando, Fla.
  • RadFXSat-2 – Vanderbilt University, Nashville, Tenn.
  • TechEdSat-7 – NASA Ames Research Center, Moffett Field, Calif.

CSLI is an initiative created by NASA to attract and retain students in the science, technology, engineering and mathematics disciplines. Missions are selected through the CubeSat Launch Initiative and managed by NASA’s Launch Services Program at the agency’s Kennedy Space Center in Florida. Visit our website to learn more and follow us on Twitter at NASA_LSP and Facebook at NASA LSP.

Launch Window Opens for ELaNa 20 Mission

Virgin Orbit’s LauncherOne system undergoes final preparations on a taxiway at Mojave Air and Space Port ahead of the company’s Launch Demo 2 mission. Taken in late December 2020. Photo: Virgin Orbit/Greg Robinson.
Virgin Orbit’s LauncherOne system undergoes final preparations on a taxiway at Mojave Air and Space Port ahead of the company’s Launch Demo 2 mission. Taken in late December 2020. Photo: Virgin Orbit/Greg Robinson.

Virgin Orbit’s Cosmic Girl aircraft and LauncherOne rocket are positioned for takeoff from the Mojave Air and Space Port in California, in preparation to launch 10 small NASA-sponsored research satellites, or CubeSats, as part of the agency’s 20th Educational Launch of Nanosatellites (ELaNa) mission.

Cosmic Girl carries the LauncherOne rocket on the underside of the 747-aircraft’s left wing. When Cosmic Girl reaches its specified altitude over the Pacific Ocean, LauncherOne will be released for a controlled drop until the rocket’s NewtonThree first stage engine ignites to start the launch sequence that will send the satellites into low-Earth orbit. The mission has a three-hour launch window from 1 p.m. to 5 p.m. ET (10 a.m. to 2 p.m. PT).

Virgin Orbit was one of three companies selected as Venture Class Launch Services (VCLS) providers through a contract NASA first awarded in October 2015. This mission, called Launch Demo 2, will be the first time Virgin Orbit’s LauncherOne rocket will carry customer payloads. ELaNa missions are managed by NASA’s Launch Services Program based at the agency’s Kennedy Space Center in Florida.

The 10 CubeSats set to launch on this mission were designed and built by eight different universities in the United States, as well as one NASA center. These include:

  • CACTUS-1 – Capitol Technology University, Laurel, Md.
  • CAPE-3 – University of Louisiana at Lafayette
  • EXOCUBE – California Polytechnic State University, San Luis Obispo
  • MiTEE – University of Michigan, Ann Arbor, Mich.
  • PICS (two CubeSats) – Brigham Young University, Provo, Utah
  • PolarCube – University of Colorado at Boulder
  • Q-PACE – University of Central Florida, Orlando, Fla.
  • RadFXSat-2 – Vanderbilt University, Nashville, Tenn.
  • TechEdSat-7 – NASA Ames Research Center, Moffett Field, Calif.

NASA selected and sponsored these providers through the agency’s CubeSat Launch Initiative (CSLI). By offering CubeSat developers a relatively low-cost avenue to conduct science investigations and technology demonstrations in space, NASA gives K-12 schools, universities, and non-profit organizations hands-on flight hardware development experience.

Stay connected with the mission on social media, and let people know you’re following it on Twitter, Facebook, and Instagram by tagging these accounts:

Twitter: @NASA,  @NASA_LSP, @Virgin_Orbit

Facebook:  NASA, NASA LSP, Virgin Orbit

Instagram:  @NASA, @virgin.orbit

Sentinel-6 Michael Freilich Satellite in Earth Orbit, Mission Begins to Map Sea Levels

A SpaceX Falcon 9 rocket with the Sentinel-6 Michael Freilich satellite launches on Nov. 21, 2020, from Space Launch Complex 4E at Vandenberg Air Force Base in California
A SpaceX Falcon 9 rocket with the Sentinel-6 Michael Freilich satellite launches on Nov. 21, 2020, from Space Launch Complex 4E at Vandenberg Air Force Base in California. Image credit: NASA TV

A SpaceX Falcon 9 rocket, carrying the Sentinel-6 Michael Freilich satellite, launched at 9:17 a.m. PST (12:17 p.m. EST) on Nov. 21, 2020, from Space Launch Complex-4 at Vandenberg Air Force Base (VAFB) in California.

Following launch, the SpaceX Falcon 9 first stage separated and returned to Earth for a vertical landing at VAFB. After arriving in orbit, the Sentinel-6 Michael Freilich satellite separated from the rocket’s second stage and unfolded its twin sets of solar arrays. Ground controllers successfully acquired the satellite’s signal, and initial telemetry reports showed the spacecraft in good health. Sentinel-6 Michael Freilich will now undergo a series of exhaustive checks and calibrations before it starts collecting science data in a few months’ time.

Sentinel-6 Michael Freilich is a U.S.-European collaboration and one of two satellites that compose the Copernicus Sentinel-6/Jason-CS (Continuity of Service) mission.

Agencies participating in this mission include the European Space Agency, the European Commission, the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), SpaceX, NASA, and the National Oceanic and Atmospheric Administration (NOAA). The launch was managed by NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida.

Read the full launch day wrap-up on NASA’s Sentinel-6 Michael Freilich blog.

Sentinel-6 Michael Freilich Launches on SpaceX Falcon 9

Image credit: NASA TV

A SpaceX Falcon 9 rocket carrying the Sentinel-6 Michael Freilich satellite lifted off from Space Launch Complex-4 at Vandenberg Air Force Base in California at 9:17 a.m. PST (12:17 p.m. EST) on Nov. 21, 2020. Follow along with continuing coverage on NASA’s Sentinel-6 Michael Freilich blog, on NASA TV, and the agency’s website.

Next-Generation Airlock Prepped for SpaceX CRS-21 Launch

The Nanoracks Bishop Airlock is launching on SpaceX’s 21st commercial resupply services mission to the International Space Station. Photo credit: SpaceX

The first commercially funded airlock for the International Space Station is ready for its journey to space. On Saturday, Oct. 10, teams moved the Nanoracks Bishop Airlock to SpaceX’s processing facility at NASA’s Kennedy Space Center in Florida. Two days later, it was packed in the Dragon spacecraft’s trunk for its ride to the orbiting laboratory.

CRS-21
The airlock will provide payload hosting, robotics testing, and satellite deployment, while also serving as an outside toolbox for astronauts conducting spacewalks. Photo credit: SpaceX

The airlock will provide payload hosting, robotics testing, and satellite deployment, and also will serve as an outside toolbox for crew members conducting spacewalks.

The Bishop Airlock is launching on SpaceX’s 21st commercial resupply services (CRS-21) mission to the space station. This will be the first flight of SpaceX’s upgraded cargo version of Dragon, which can carry more science payloads to and from the space station.

The pressurized capsule will carry a variety of research including studies on the effects of microgravity on cardiovascular cells, how space conditions affect the interaction between microbes and minerals, and a technology demonstration of a blood analysis tool in space. CRS-21 is scheduled to launch aboard a Falcon 9 rocket from Kennedy’s Launch Complex 39A. Teams are targeting late November or early December for liftoff.