Orion Points at the Moon with Launch Abort Tower

Teams with NASA’s Exploration Ground Systems (EGS) and contractor Jacobs integrated the launch abort system (LAS) with the Orion spacecraft inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida on July 23, 2021.
Teams with NASA’s Exploration Ground Systems (EGS) and contractor Jacobs integrated the launch abort system (LAS) with the Orion spacecraft inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida on July 23, 2021. Photo credit: NASA/Kim Shiflett

Ahead of the Artemis I lunar-bound mission, teams at NASA’s Kennedy Space Center joined the launch abort tower to the Orion spacecraft on July 23. Working inside the spaceport’s Launch Abort System Facility, engineers and technicians with Exploration Ground Systems and primary contractor, Jacobs, lifted the system above the spacecraft and coupled it with the crew module.

The launch abort system is designed to protect astronauts if a problem arises during launch by pulling the spacecraft away from a failing rocket. Although there will be no crew Artemis I, the launch abort system will collect flight data during the ascent to space and then jettison from the spacecraft.

Next, teams will install four ogives – the protective panels that shield the upper portion of the spacecraft during its entry into orbit. Once final checkouts are complete, Orion will be integrated with the Space Launch System rocket.

Teams Add Launch Abort System to Ready Orion for Artemis I

NASA's Orion spacecraft
The Orion spacecraft for the Artemis I mission arrives at Kennedy Space Center’s Launch Abort System facility on July 10, 2021, after being transported from the Florida spaceport’s Multi-Payload Processing Facility earlier in the day. Photo credit: NASA/Cory Huston

The Orion spacecraft for the Artemis I mission recently completed fueling and servicing checks while inside the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida. The capsule has now made it to its next stop on the path to the pad – the spaceport’s Launch Abort System Facility.

Crowning the spacecraft with its aerodynamic shape, the launch abort system is designed to pull crew away to safety from the Space Launch System (SLS) rocket in the event of an emergency during launch. This capability was successfully tested during the Orion Pad Abort and Ascent Abort-2 tests and approved for use during crewed missions.

Teams with Exploration Ground Systems and contractor Jacobs will work to add parts of the launch abort system onto the spacecraft. Technicians will install four panels that make up the fairing assembly and protect the spacecraft from heat, air, and acoustic environments during launch and ascent. A launch tower will top the fairing assembly to house the pyrotechnics and a jettison motor. The system will also be outfitted with instruments to record key flight data for later study.

With successful demonstration of the system during previous tests, the abort motor that pulls the spacecraft away from the rocket and attitude control motor that steers the spacecraft for a splashdown during an abort will not be functional for the uncrewed Artemis I mission. The jettison motor will be equipped to separate the system from Orion in flight once it is no longer needed, making Orion thousands of pounds lighter for the journey to the Moon.

Once the system’s integration is complete, teams will transport the spacecraft to the center’s Vehicle Assembly Building. There, it will join the already stacked flight hardware and be raised into position atop the SLS rocket, marking the final assembly milestone for the  Artemis rocket.

Launching in 2021, Artemis I will be a test of the Orion spacecraft and SLS rocket as an integrated system ahead of crewed flights to the Moon. Under Artemis, NASA aims to land the first woman and first person of color on the Moon and establish long-term lunar exploration.

View additional photos here.

Backbone of NASA’s Moon Rocket Joins Boosters for Artemis I Mission

Space Launch System core stage
Teams with NASA’s Exploration Ground Systems and contractor Jacobs lower the Space Launch System (SLS) core stage – the largest part of the rocket – onto the mobile launcher, in between the twin solid rocket boosters, inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on June 12, 2021. Photo credit: NASA/Cory Huston

Leerlo en español aquí

The core stage of the Space Launch System (SLS) rocket for NASA’s Artemis I mission has been placed on the mobile launcher in between the twin solid rocket boosters inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. The boosters attach at the engine and intertank sections of the core stage. Serving as the backbone of the rocket, the core stage supports the weight of the payload, upper stage, and crew vehicle, as well as carrying the thrust of its four engines and two five-segment solid rocket boosters.

After the core stage arrived on April 27, engineers with Exploration Ground Systems and contractor Jacobs brought the core stage into the VAB for processing work and then lifted it into place with one of the five overhead cranes in the facility.

Once the core stage is stacked alongside the boosters, the launch vehicle stage adapter, which connects the core stage to the interim cryogenic propulsion stage (ICPS), will be stacked atop the core stage and quickly followed by the ICPS.

Artemis I will be an uncrewed test of the Orion spacecraft and SLS rocket as an integrated system ahead of crewed flights to the Moon. Under the Artemis program, NASA aims to land the first woman and first person of color on the Moon in 2024 and establish sustainable lunar exploration by the end of the decade.

Under Pressure! New Rainbird System Will Protect Artemis II

Water spraying out of a nozzle for rainbird testing for the Artemis II mission.
Water flows through a small-scale, 3D-printed nozzle during prototype testing of a new rainbird system on March 24, 2021, at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Ben Smegelsky

As NASA prepares for the uncrewed Artemis I test flight, teams at the agency’s Kennedy Space Center are also hard at work getting ready for the Artemis II mission that will send astronauts on a trip around the Moon ahead of a crewed lunar landing.

Water flows through large nozzles during rainbird testing for the Artemis II mission.
Teams with NASA’s Exploration Ground Systems and supporting contractors conduct prototype testing of a new rainbird system at the agency’s Kennedy Space Center in Florida on March 24, 2021, that can be used for the crewed Artemis II mission to the Moon. Photo credit: NASA/Ben Smegelsky

This includes assessing a new prototype “rainbird” system designed to protect the mobile launcher – as well as NASA’s Space Launch System (SLS) – when the engines roar to life. The March 24 tests included running various water pressures through small-scale, 3D-printed nozzles to capture data that can be used to develop full-scale hardware.

The rainbirds will release enough water to fill 40 swimming pools in 40 seconds. This massive volume will help absorb the heat and energy when SLS, the most powerful rocket the agency has ever built, lifts off with the Orion spacecraft from Kennedy’s Launch Pad 39B.

While upgraded rainbirds – large-scale water nozzles – have already been tested and installed on the mobile launcher for the Artemis I launch, Exploration Ground Systems (EGS) found room for improvement. This led teams from EGS and supporting contractors to start testing another prototype system to distribute water more evenly to maximize performance ahead of the Artemis II launch.

Water flows through a nozzle during rainbird testing for the Artemis II mission.
Alongside the iconic Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, teams with the agency’s Exploration Ground Systems and supporting contractors conduct prototype testing of a new rainbird system on March 24, 2021. Photo credit: NASA/Ben Smegelsky

“By running our prototype through a range of pressures, we can simulate what each of the rainbirds will see on the mobile launcher on launch day and have a better understanding of how they will perform when we scale them back up to full size,” said Dave Valletta, a design engineer at Kennedy working on the ignition overpressure protection and sound suppression (IOPSS) system.

A critical piece of the IOPSS system, the rainbird got its name decades ago when space shuttle developers noted that it looked like a garden sprayer.

“When we saw the pattern of the water discharge during the first test flow in the shuttle program, it reminded us of your common lawn sprinkler, only it did not rotate and was 100 times the size,” said Jerry Smith, a design engineer for mechanical-fluid systems at Kennedy.

Once prototype testing is complete, allowing better prediction of future spray patterns, the team will move forward with designing a preferred concept. That concept will be built and installed on the mobile launcher to undergo verification and validation testing, where the newly installed nozzles will be fully integrated with the launch pad to ensure they work as expected.

“The confidence check gained from these tests will lead us to developing full-scale nozzles for the mobile launcher,” said Gerald Patterson, IOPSS and fire suppression system operations engineer and test lead. “Once installed, they’ll provide more efficient water distribution across the deck and, ultimately, better protection to ground systems, the SLS rocket, and its crew for Artemis II and beyond.”

Mammoth Artemis I Rocket Boosters Stacked on Mobile Launcher

The Space Launch System boosters are stacked on the mobile launcher inside the Vehicle Assembly Building.
The Space Launch System twin solid rocket boosters are fully assembled and stacked on the mobile launcher inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on March 3, 2021. Photo credit: NASA/Isaac Watson

Leerlo en español aquí.

Stacking is complete for the twin Space Launch System (SLS) solid rocket boosters for NASA’s Artemis I mission. Over several weeks, workers used one of five massive cranes to place 10 booster segments and nose assemblies on the mobile launcher inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Engineers with Exploration Ground Systems placed the first segment on Nov. 21, 2020, and continued the process until the final nose assembly was placed on March 2.

Prior to the arrival of the core stage, the team will finish installing electrical instrumentation and pyrotechnics, then test the systems on the boosters. When the SLS core stage arrives at Kennedy, technicians will transport it to the VAB and then stack it on the mobile launcher between the two boosters.

The SLS will be the most powerful rocket in the world, producing up to 8.8 million pounds of thrust during its Artemis I launch.

“Seeing the Space Launch System solid rocket boosters stacked completely on the Mobile Launcher for the first time makes me proud of the entire team especially  the Exploration Ground Systems crew at Kennedy who are assembling them and also the teams at Marshall and Northrop Grumman who designed, tested and built them,” said Bruce Tiller, the SLS boosters manager at NASA’s Marshall Space Flight Center. “This team has created the tallest, most powerful boosters ever built for flight, boosters that will help launch the Artemis I mission to the Moon.”

Artemis I will be an uncrewed test of the Orion spacecraft and SLS rocket as an integrated system ahead of crewed flights to the Moon. Under the Artemis program, NASA aims to land the first woman and the next man on the Moon in 2024 and establish sustainable lunar exploration by the end of the decade.

Artemis I Boosters Reach New Heights

Space Launch System boosters for the Artemis I mission are stacked in the Vehicle Assembly Building.
In High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the left-hand and right-hand forward segments are secured on top of the center forward segments on the mobile launcher (ML) for the Space Launch System (SLS) on Feb. 24, 2021. Photo credit: NASA/Glenn Benson

NASA’s Space Launch System (SLS) solid rocket boosters have grown taller with the addition of the fifth and final pair of motor segments in preparation for the launch of Artemis I later this year. At NASA’s Kennedy Space Center in Florida, engineers with Exploration Ground Systems lowered the final solid rocket booster into place on the mobile launcher on Feb. 23. Up next, the nose assemblies will be placed atop the segments to complete the boosters. The twin boosters will power the first flight of the agency’s new deep space rocket during the launch of Artemis I. This mission is an uncrewed flight to test the SLS rocket and Orion spacecraft as an integrated system, preparing the way for Artemis II and other crewed flights to the Moon.

Artemis I Boosters Take Shape

The Space Launch System solid rocket boosters are being stacked on the mobile launcher inside the Vehicle Assembly Building.
The twin solid rocket boosters for NASA’s Space Launch System (SLS) are being stacked on the mobile launcher inside the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida. The boosters will power SLS on the Artemis I mission. Photo credit: NASA/Kim Shiflett

Booster stacking continues! The second to last set of segments for NASA’s Space Launch System (SLS) solid rocket boosters were placed on the mobile launcher inside the Vehicle Assembly Building at NASA’s Kennedy Space Center. Engineers with Exploration Ground Systems and Jacobs transported the segments from the Rotation, Processing and Surge Facility, where they have been since June. Once fully stacked, each booster will stand nearly 17 stories tall. The twin boosters will power the first flight of the agency’s new deep space rocket during the Artemis I mission. This uncrewed flight later this year will test the SLS rocket and Orion spacecraft as an integrated system ahead of crewed flights.

NASA’s Space Launch System Receives Another Major Boost

SLS solid rocket boosters
The solid rocket boosters will power the first flight of NASA’s Space Launch System rocket on the Artemis I mission. Photo credit: NASA/Kim Shiflett

The third of five sets of solid rocket boosters for NASA’s Space Launch System (SLS) rocket were placed on the mobile launcher inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The middle segments, painted with the iconic “worm” logo, were lifted onto the launcher by Jacobs and Exploration Ground Systems engineers using the VAB’s 325-ton crane.

The twin boosters will power the first flight of the agency’s new deep space rocket on its first Artemis Program mission. Artemis I will be an uncrewed flight to test the SLS rocket and Orion spacecraft as an integrated system ahead of crewed flights.

Artemis I Boosters Continue to Stack Up

In High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the right-hand center aft booster segment for Artemis I is stacked on the mobile launcher for the Space Launch System (SLS) on Jan. 7, 2021.
In High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the right-hand center aft booster segment for Artemis I is stacked on the mobile launcher for the Space Launch System (SLS) on Jan. 7, 2021. Photo credit: NASA/Kim Shiflett

Booster stacking for NASA’s Space Launch System (SLS) rocket is continuing at NASA’s Kennedy Space Center. The second of five segments for the SLS rocket boosters have been placed on the mobile launcher in preparation for the launch of Artemis I later this year. This marks four out of 10 solid rocket booster segments being lifted via crane and placed on the launcher, the structure used to process, assemble, and launch SLS. The twin boosters will power the first flight of SLS, the agency’s new deep space rocket for Artemis I. This uncrewed flight will test the SLS and Orion spacecraft as an integrated system ahead of crewed flights to the Moon as part of the Artemis program.

Orion Test Articles Arrive to Kennedy for Testing on Future Artemis Missions

NASA’s Super Guppy arrives at Kennedy Space Center’s Launch and Landing Facility in Florida on Sept. 11, 2020, carrying the Orion Service Module Structural Test Article (SM-STA). Photo credit: NASA/Yulista Tactical Services, LLC/Tommy Quijas

The Orion Service Module Structural Test Article (SM-STA), composed of the European Service Module (ESM) and Crew Module Adapter (CMA), arrived at NASA’s Kennedy Space Center in Florida following the completion of the test campaign to certify the Orion Service Module for Artemis I. Transported via Super Guppy from Lockheed Martin’s test facility in Denver, Colorado, on Sept. 11, components will now be used in testing for future Artemis missions.

“The Orion SM-STA supported testing in multiple configurations to validate the structural robustness of the vehicle under a variety of conditions that a spacecraft will experience on lunar missions for the Artemis program,” said Rafael Garcia, Orion Test and Verification lead.

At Kennedy, the Orion SM-STA test article will be separated from the CMA test article, and portions of the CMA test article will support qualifications tests in preparation for the Artemis II mission. The test version of the ESM will remain at Kennedy, in order to support future structural qualification tests such as testing what volume of sound and how much shaking the vehicle can handle for future Artemis missions.

When tested together, the full test stack of Orion verified the spacecraft’s structural durability for all flight phases of the Artemis I flight, which is designed to be an opportunity to test the kind of maneuvers and environments the spacecraft will see on future exploration missions. The test structures experienced launch and entry loads tests, intense acoustic vibration force, and shock tests that recreate the powerful blasts needed for critical separation events during flight. A lightning test was performed to evaluate potential flight hardware damage if the vehicle were to be hit by lightning prior to launch.

The Artemis II flight will test a hybrid free return trajectory, which uses the Moon’s gravitational pull as a slingshot to put Orion on the return path home instead of using propulsion. With astronauts aboard the spacecraft, additional validation is required of all vehicle components to certify the capsule prior to proving lunar sustainability with Artemis III and beyond.

The first in a series of increasingly complex missions, Artemis I will test the Orion spacecraft and Space Launch System as an integrated system ahead of crewed flights to the Moon. Under the Artemis program, NASA will land the first woman and the next man on the Moon in 2024.