Artemis I Rocket Grows Closer to Launch

Teams with NASA’s Exploration Ground Systems and contractor Jacobs integrate the interim cryogenic propulsion stage (ICPS) for NASA’s Space Launch System (SLS) rocket with the launch vehicle stage adapter (LVSA) atop the massive SLS core stage in the agency’s Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida on July 5, 2021.
Teams with NASA’s Exploration Ground Systems and contractor Jacobs integrate the interim cryogenic propulsion stage (ICPS) for NASA’s Space Launch System (SLS) rocket with the launch vehicle stage adapter (LVSA) atop the massive SLS core stage in the agency’s Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida on July 5, 2021. Photo credit: NASA/Kim Shiflett
Teams with NASA’s Exploration Ground Systems and contractor Jacobs integrate the interim cryogenic propulsion stage (ICPS) for NASA’s Space Launch System (SLS) rocket with the launch vehicle stage adapter (LVSA) atop the massive SLS core stage in the agency’s Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida on July 5, 2021.
The ICPS is a liquid oxygen and liquid hydrogen-based system that will fire its RL 10 engine to give the Orion spacecraft the big in-space push needed to fly tens of thousands of miles beyond the Moon. Photo credit: NASA/Kim Shiflett

Leerlo en español aquí.

The Artemis I mission reached another milestone this week inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. On July 5, teams with Exploration Ground Systems and contractor Jacobs stacked the interim cryogenic propulsion stage (ICPS) atop the Space Launch System (SLS) rocket.

The ICPS’s RL 10 engine is housed inside the launch vehicle stage adapter, which will protect the engine during launch. The adapter connects the rocket’s core stage with the ICPS, which was built by Boeing and United Launch Alliance.

The ICPS will fire its RL 10 engine to send the  Orion spacecraft toward the Moon. Its European-built service module will provide the power to take the spacecraft on a journey tens of thousands of miles beyond the Moon.

Before attaching the Orion spacecraft to the rocket, teams will conduct a series of tests to assure all the rocket components are properly communicating with each other, the ground systems equipment, and the Launch Control Center.

The ICPS moved to the VAB on June 19, after technicians in the center’s Multi-Payload Processing Facility completed servicing the flight hardware inside.

Launching in 2021, Artemis I will be an uncrewed flight test of the Orion spacecraft and SLS rocket as an integrated system ahead of missions with astronauts. Under Artemis, NASA aims to land the first woman and first person of color on the Moon and establish a long-lasting presence on and around the Moon while preparing for human missions to Mars.

View additional photos here.

Next Element for NASA’s Moon Rocket Gets Stacked for Artemis I

The launch vehicle stage adapter for the Space Launch System rocket is integrated with the core stage inside the Vehicle Assembly Building.
Teams with NASA’s Exploration Ground Systems and contractor Jacobs integrate the launch vehicle stage adapter (LVSA) for NASA’s Space Launch System (SLS) rocket with the massive SLS core stage on the mobile launcher in the agency’s Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida on June 22, 2021. Photo credit: NASA/Frank Michaux

Leerlo en español aquí.

Workers at NASA’s Kennedy Space Center in Florida have stacked the launch vehicle stage adapter atop the Space Launch System rocket’s core stage inside the Vehicle Assembly Building (VAB). Engineers with Exploration Ground Systems used one of five VAB cranes to lift the adapter almost 250-feet in the air and then slowly lower it on to the core stage.

The adapter is the cone shaped piece that connects the rocket’s core stage and interim cryogenic propulsion stage (ICPS), which will provide the Orion spacecraft with the additional thrust needed to travel tens of thousands of miles beyond the Moon. Up next, the ICPS will be lifted from the VAB floor onto the stage adapter.

Launching in 2021, Artemis I will be an uncrewed flight test of the Orion spacecraft and SLS rocket as an integrated system ahead missions with astronauts. Through the series of Artemis missions, NASA aims to land the first woman and first person of color on the Moon and establish a long-lasting presence on and around the Moon while preparing for human missions to Mars.

Backbone of NASA’s Moon Rocket Joins Boosters for Artemis I Mission

Space Launch System core stage
Teams with NASA’s Exploration Ground Systems and contractor Jacobs lower the Space Launch System (SLS) core stage – the largest part of the rocket – onto the mobile launcher, in between the twin solid rocket boosters, inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on June 12, 2021. Photo credit: NASA/Cory Huston

Leerlo en español aquí

The core stage of the Space Launch System (SLS) rocket for NASA’s Artemis I mission has been placed on the mobile launcher in between the twin solid rocket boosters inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. The boosters attach at the engine and intertank sections of the core stage. Serving as the backbone of the rocket, the core stage supports the weight of the payload, upper stage, and crew vehicle, as well as carrying the thrust of its four engines and two five-segment solid rocket boosters.

After the core stage arrived on April 27, engineers with Exploration Ground Systems and contractor Jacobs brought the core stage into the VAB for processing work and then lifted it into place with one of the five overhead cranes in the facility.

Once the core stage is stacked alongside the boosters, the launch vehicle stage adapter, which connects the core stage to the interim cryogenic propulsion stage (ICPS), will be stacked atop the core stage and quickly followed by the ICPS.

Artemis I will be an uncrewed test of the Orion spacecraft and SLS rocket as an integrated system ahead of crewed flights to the Moon. Under the Artemis program, NASA aims to land the first woman and first person of color on the Moon in 2024 and establish sustainable lunar exploration by the end of the decade.

Orion Spacecraft Adorned with Iconic NASA Worm Logo

The historic worm logo is visible on the Orion spacecraft's crew module adapter inside the Multi-Payload Processing Facility.
NASA’s iconic worm logo has been added to the outward-facing wall of Orion’s crew module adapter (CMA) inside the Multi-Payload Processing Facility (MPPF) at NASA’s Kennedy Space Center in Florida. In the background is the Space Launch System rocket’s Interim Cryogenic Propulsion Stage, undergoing fueling and servicing inside the MPPF alongside the CMA. Photo credit: NASA/Glenn Benson

The Orion spacecraft receives another iconic NASA “worm” logo ahead of the Artemis I mission. On April 28 teams with the agency’s Exploration Ground Systems and lead contractor Jacobs completed painting the retro insignia on the outboard wall of the spacecraft’s crew module adapter (CMA) – the piece of hardware connecting the crew module to the European-built service module – inside the Multi-Payload Processing Facility (MPPF) at NASA’s Kennedy Space Center in Florida.

While a decal of the historic logo was added to the underside of the CMA in September 2020, having it painted on the siding of the spacecraft will make it visible as the spacecraft is poised atop the Space Launch System (SLS) rocket, awaiting liftoff from Kennedy’s Launch Pad 39B.

The worm logo was officially introduced in 1975, retired in 1992, and then made a comeback in 2020, just as NASA entered a new era of human spaceflight. In addition to its appearance on the CMA, the bright red logo also was painted on the SLS twin solid rocket boosters in August 2020.

The Orion spacecraft and Interim Cryogenic Propulsion Stage (ICPS) – the upper stage of the rocket responsible for sending Orion on its journey around the Moon – are currently being fueled and serviced in the MPPF. Once fueling is complete, Orion will move to the Launch Abort System Facility for integration of its launch abort system, while the ICPS will move to the Vehicle Assembly Building to be stacked on the mobile launcher.

Artemis I will be the first integrated test of SLS and Orion and will pave the way for landing the first woman and first person of color on the lunar surface. The mission will be a stepping stone for deep space exploration, leading the agency’s efforts under the Artemis program for a sustainable presence on the Moon and preparing for human missions to Mars.

Click here for a video of the logo being added to the CMA.

Under Pressure! New Rainbird System Will Protect Artemis II

Water spraying out of a nozzle for rainbird testing for the Artemis II mission.
Water flows through a small-scale, 3D-printed nozzle during prototype testing of a new rainbird system on March 24, 2021, at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Ben Smegelsky

As NASA prepares for the uncrewed Artemis I test flight, teams at the agency’s Kennedy Space Center are also hard at work getting ready for the Artemis II mission that will send astronauts on a trip around the Moon ahead of a crewed lunar landing.

Water flows through large nozzles during rainbird testing for the Artemis II mission.
Teams with NASA’s Exploration Ground Systems and supporting contractors conduct prototype testing of a new rainbird system at the agency’s Kennedy Space Center in Florida on March 24, 2021, that can be used for the crewed Artemis II mission to the Moon. Photo credit: NASA/Ben Smegelsky

This includes assessing a new prototype “rainbird” system designed to protect the mobile launcher – as well as NASA’s Space Launch System (SLS) – when the engines roar to life. The March 24 tests included running various water pressures through small-scale, 3D-printed nozzles to capture data that can be used to develop full-scale hardware.

The rainbirds will release enough water to fill 40 swimming pools in 40 seconds. This massive volume will help absorb the heat and energy when SLS, the most powerful rocket the agency has ever built, lifts off with the Orion spacecraft from Kennedy’s Launch Pad 39B.

While upgraded rainbirds – large-scale water nozzles – have already been tested and installed on the mobile launcher for the Artemis I launch, Exploration Ground Systems (EGS) found room for improvement. This led teams from EGS and supporting contractors to start testing another prototype system to distribute water more evenly to maximize performance ahead of the Artemis II launch.

Water flows through a nozzle during rainbird testing for the Artemis II mission.
Alongside the iconic Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, teams with the agency’s Exploration Ground Systems and supporting contractors conduct prototype testing of a new rainbird system on March 24, 2021. Photo credit: NASA/Ben Smegelsky

“By running our prototype through a range of pressures, we can simulate what each of the rainbirds will see on the mobile launcher on launch day and have a better understanding of how they will perform when we scale them back up to full size,” said Dave Valletta, a design engineer at Kennedy working on the ignition overpressure protection and sound suppression (IOPSS) system.

A critical piece of the IOPSS system, the rainbird got its name decades ago when space shuttle developers noted that it looked like a garden sprayer.

“When we saw the pattern of the water discharge during the first test flow in the shuttle program, it reminded us of your common lawn sprinkler, only it did not rotate and was 100 times the size,” said Jerry Smith, a design engineer for mechanical-fluid systems at Kennedy.

Once prototype testing is complete, allowing better prediction of future spray patterns, the team will move forward with designing a preferred concept. That concept will be built and installed on the mobile launcher to undergo verification and validation testing, where the newly installed nozzles will be fully integrated with the launch pad to ensure they work as expected.

“The confidence check gained from these tests will lead us to developing full-scale nozzles for the mobile launcher,” said Gerald Patterson, IOPSS and fire suppression system operations engineer and test lead. “Once installed, they’ll provide more efficient water distribution across the deck and, ultimately, better protection to ground systems, the SLS rocket, and its crew for Artemis II and beyond.”

Mammoth Artemis I Rocket Boosters Stacked on Mobile Launcher

The Space Launch System boosters are stacked on the mobile launcher inside the Vehicle Assembly Building.
The Space Launch System twin solid rocket boosters are fully assembled and stacked on the mobile launcher inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on March 3, 2021. Photo credit: NASA/Isaac Watson

Leerlo en español aquí.

Stacking is complete for the twin Space Launch System (SLS) solid rocket boosters for NASA’s Artemis I mission. Over several weeks, workers used one of five massive cranes to place 10 booster segments and nose assemblies on the mobile launcher inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Engineers with Exploration Ground Systems placed the first segment on Nov. 21, 2020, and continued the process until the final nose assembly was placed on March 2.

Prior to the arrival of the core stage, the team will finish installing electrical instrumentation and pyrotechnics, then test the systems on the boosters. When the SLS core stage arrives at Kennedy, technicians will transport it to the VAB and then stack it on the mobile launcher between the two boosters.

The SLS will be the most powerful rocket in the world, producing up to 8.8 million pounds of thrust during its Artemis I launch.

“Seeing the Space Launch System solid rocket boosters stacked completely on the Mobile Launcher for the first time makes me proud of the entire team especially  the Exploration Ground Systems crew at Kennedy who are assembling them and also the teams at Marshall and Northrop Grumman who designed, tested and built them,” said Bruce Tiller, the SLS boosters manager at NASA’s Marshall Space Flight Center. “This team has created the tallest, most powerful boosters ever built for flight, boosters that will help launch the Artemis I mission to the Moon.”

Artemis I will be an uncrewed test of the Orion spacecraft and SLS rocket as an integrated system ahead of crewed flights to the Moon. Under the Artemis program, NASA aims to land the first woman and the next man on the Moon in 2024 and establish sustainable lunar exploration by the end of the decade.

Artemis I Boosters Reach New Heights

Space Launch System boosters for the Artemis I mission are stacked in the Vehicle Assembly Building.
In High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the left-hand and right-hand forward segments are secured on top of the center forward segments on the mobile launcher (ML) for the Space Launch System (SLS) on Feb. 24, 2021. Photo credit: NASA/Glenn Benson

NASA’s Space Launch System (SLS) solid rocket boosters have grown taller with the addition of the fifth and final pair of motor segments in preparation for the launch of Artemis I later this year. At NASA’s Kennedy Space Center in Florida, engineers with Exploration Ground Systems lowered the final solid rocket booster into place on the mobile launcher on Feb. 23. Up next, the nose assemblies will be placed atop the segments to complete the boosters. The twin boosters will power the first flight of the agency’s new deep space rocket during the launch of Artemis I. This mission is an uncrewed flight to test the SLS rocket and Orion spacecraft as an integrated system, preparing the way for Artemis II and other crewed flights to the Moon.

NASA “Meatball” Insignia and ESA Logo Added to Artemis I Fairings

The NASA and ESA insignias are in view on the Orion spacecraft adapter jettison fairings in the MPPF at Kennedy Space Center.
Artemis I extends NASA and ESA’s (European Space Agency) strong international partnership beyond low-Earth orbit to lunar exploration with Orion on Artemis missions, as the ESA logo joins the historic NASA “meatball” insignia on the Artemis I spacecraft adapter jettison fairing panels that protect the service module during launch. Photo credit: NASA/Glenn Benson

NASA’s Artemis I Orion spacecraft is being outfitted with additional artwork as technicians began installing the logo for ESA (European Space Agency). ESA provided the European-built service module, which provides power and propulsion for the Orion spacecraft, and will also provide water and air for astronauts on future missions.

The NASA and ESA insignias are in view on the Orion spacecraft adapter jettison fairings in the MPPF at Kennedy Space Center.
The ESA (European Space Agency) logo joins the historic NASA “meatball” insignia on the Artemis I spacecraft adapter jettison fairing panels that protect the service module during launch. Orion is currently stationed at NASA’s Kennedy Space Center in the Multi-Payload Processing Facility. Photo credit: NASA/Glenn Benson

Artemis I extends NASA and ESA’s strong international partnership beyond low-Earth orbit to lunar exploration with Orion on Artemis missions. The ESA logo joins the historic NASA “meatball” insignia on the Artemis I spacecraft adapter jettison fairing panels that protect the service module during launch.

Orion is currently stationed at NASA’s Kennedy Space Center in the Multi-Payload Processing Facility, where it will undergo fueling and servicing by NASA’s Exploration Ground Systems and Jacobs Technology teams in preparation for the upcoming flight test with the Space Launch System rocket under the agency’s Artemis program.

Artemis I Boosters Take Shape

The Space Launch System solid rocket boosters are being stacked on the mobile launcher inside the Vehicle Assembly Building.
The twin solid rocket boosters for NASA’s Space Launch System (SLS) are being stacked on the mobile launcher inside the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida. The boosters will power SLS on the Artemis I mission. Photo credit: NASA/Kim Shiflett

Booster stacking continues! The second to last set of segments for NASA’s Space Launch System (SLS) solid rocket boosters were placed on the mobile launcher inside the Vehicle Assembly Building at NASA’s Kennedy Space Center. Engineers with Exploration Ground Systems and Jacobs transported the segments from the Rotation, Processing and Surge Facility, where they have been since June. Once fully stacked, each booster will stand nearly 17 stories tall. The twin boosters will power the first flight of the agency’s new deep space rocket during the Artemis I mission. This uncrewed flight later this year will test the SLS rocket and Orion spacecraft as an integrated system ahead of crewed flights.

NASA’s Space Launch System Receives Another Major Boost

SLS solid rocket boosters
The solid rocket boosters will power the first flight of NASA’s Space Launch System rocket on the Artemis I mission. Photo credit: NASA/Kim Shiflett

The third of five sets of solid rocket boosters for NASA’s Space Launch System (SLS) rocket were placed on the mobile launcher inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The middle segments, painted with the iconic “worm” logo, were lifted onto the launcher by Jacobs and Exploration Ground Systems engineers using the VAB’s 325-ton crane.

The twin boosters will power the first flight of the agency’s new deep space rocket on its first Artemis Program mission. Artemis I will be an uncrewed flight to test the SLS rocket and Orion spacecraft as an integrated system ahead of crewed flights.