From left (front to back), NASA astronauts Victor Glover, Christina Hammock Koch, and Reid Wiseman, along with Canadian Space Agency astronaut Jeremy Hansen, pose inside the Vehicle Advanced Demonstrator for Emergency Recovery (VADR) during a tour of Naval Base San Diego on July 19, 2023. VADR is a replica of the Orion crew module that will carry the astronauts around the Moon on Artemis II. Photo credit: U.S. Navy/Mass Communication Specialist 2nd Class Joshua Samoluk
The Artemis II crew – NASA astronauts Reid Wiseman, Victor Glover, Christina Hammock Koch, and Canadian Space Agency astronaut Jeremy Hansen – visited Naval Base San Diego on July 19 ahead of the first Artemis II recovery test in the Pacific Ocean, Underway Recovery Test-10. The test will build on the success of Artemis I recovery and ensure NASA and the Department of Defense personnel can safely recover astronauts and their Orion spacecraft after their trip around the Moon on the first crewed Artemis mission.
The crew met with recovery team members from NASA’s Exploration Ground Systems Program and the Department of Defense to learn more about the recovery process for their mission, which includes being extracted from the spacecraft after splashing down in the Pacific Ocean and being lifted via helicopter to the recovery ship where they will undergo routine medical checks before returning to shore.
The visit included a walkdown of the ground equipment and facilities the team uses to practice recovery procedures along with a walkthrough of the recovery ship. The crew will participate in full recovery testing at sea next year.
Final stacking operations for NASA’s mega-Moon rocket are underway inside the Vehicle Assembly Building at NASA’s Kennedy Space Center as the Orion spacecraft is lifted onto the Space Launch System (SLS) rocket for the Artemis I mission. Engineers and technicians with Exploration Ground Systems (EGS) and Jacobs attached the spacecraft to one of the five overhead cranes inside the building and began lifting it a little after midnight EDT.
Next, teams will slowly lower it onto the fully stacked SLS rocket and connect it to the Orion Stage Adapter. This will require the EGS team to align the spacecraft perfectly with the adapter before gently attaching the two together. This operation will take several hours to make sure Orion is securely in place.
NASA will provide an update once stacking for the Artemis I mission is complete.
At NASA’s Kennedy Space Center in Florida, a truck sprays water along the crawlerway to reduce dust ahead of the crawler-transporter moving the mobile launcher platform 2 (MLP-2) from Launch Pad 39A to a nearby park site in Launch Complex 39. MLP-2 was demolished, making way for newer, more advanced technology to be used in NASA’s Artemis missions. Photo credit: NASA/Kim Shiflett
By Jim Cawley NASA’s Kennedy Space Center
The mobile launcher platform 2, or MLP-2, served NASA well, as it was used for more than 50 Apollo and space shuttle missions at the agency’s Kennedy Space Center from 1968 to 2011.
A nine-month demolition project for the 25-foot high, 160-foot long, and 135-foot-wide platform, which weighed 9.1 million pounds, was completed last month. Though MLP-2 was a historic piece of equipment, its removal makes way for newer, more advanced technology at the Florida spaceport.
The two mobile launcher platforms are seen at the park site at Kennedy Space Center on Jan. 4, 2021. A nine-month demolition project for Mobile launcher platform 2, which used during the shuttle program, was recently completed. NASA/Kim Shiflett
“It was bittersweet having to dismantle MLP-2,” said John Giles, Exploration Ground Systems crawler transporter operations manager. “However, it allows us to make room for newer, more advanced assets to support Artemis missions that will return humans to the Moon and beyond.”
Mobile launcher platforms were used for shuttle missions lifting off from Launch Complex 39A and 39B. These structures did not require a tower since the launch pad had a tower and rotating service structure to allow access to the vehicle.
Since the retirement of the shuttle program, the historic Launch Complex 39A, once the site of Apollo and Saturn V missions, was leased to SpaceX and upgraded to support commercial launches carrying cargo and astronauts into space.
Launch Complex 39B also has changed with the times. It began as an Apollo era structure, was converted for shuttle launches, and now is a clean pad ready to support the Space Launch System (SLS) rocket, carrying the Orion spacecraft as the agency returns to the Moon. When SLS lifts off from pad 39B carrying Orion for the Artemis I mission, it will use the new, advanced mobile launcher that comes with a built-in tower.
Click here to watch a time-lapse video of the MLP-2 demolition.
A view of the Interim Cryogenic Propulsion System inside the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida on Feb. 18, 2021. Photo credit: NASA/Glenn Benson
Teams with NASA’s Kennedy Space Center Exploration Ground Systems and primary contractor, Jacobs, are fueling the Orion service module ahead of the Artemis I mission. The spacecraft currently resides in Kennedy’s Multi-Payload Processing Facility alongside the Interim Cryogenic Propulsion System (ICPS), the rocket’s upper stage that will send Orion to the Moon. After servicing, these elements will be integrated with the flight components of the Space Launch System, which are being assembled in the Vehicle Assembly Building.
Technicians began loading Orion’s service module with oxidizer, which will power the Orbital Maneuvering System main engine and auxiliary thrusters on the European-built service module ahead of propellant loading. These auxiliary thrusters stabilize and control the rotation of the spacecraft after it separates from the ICPS. Once the service module is loaded, teams will fuel the crew module to support thermal control of the internal avionics and the reaction control system. These 12 thrusters steady the crew module and control its rotation after separation from the service module.
Once Orion servicing is complete, teams will fill the ICPS. This liquid oxygen/liquid hydrogen-based system will push the spacecraft beyond the Moon for the test flight under the agency’s Artemis program. In several weeks, when fueling is complete, Orion will move to the center’s Launch Abort System Facility to integrate its launch abort system, and the ICPS will move to the Vehicle Assembly Building to be stacked atop the mobile launcher.
The twin boosters will power the first flight of the agency’s new deep space rocket on its first Artemis Program mission. Artemis I will be an uncrewed flight to test the SLS rocket and Orion spacecraft as an integrated system ahead of crewed flights.
In High Bay 4 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane moves Space Launch System (SLS) solid rocket booster pathfinder segments to stack them atop other pathfinder segments during a training exercise on Jan. 8, 2020. Photo credit: NASA/Glenn Benson
NASA’s Exploration Ground Systems team, including engineers, technicians and crane operators with contractor Jacobs, are practicing lifting and stacking operations with pathfinder segments of Northrup Grumman’s solid rocket boosters, which will provide extra thrust for NASA’s Space Launch System rocket. Practice took place in High Bay 4 of the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida.
”The pathfinder training has gone extremely well,” according to Michael McClure, Jacobs’ lead engineer for the Handling, Mechanical and Structures Engineering Group. “This is part of a series of practice exercises, which are providing great experience, especially for our new technicians, engineers, quality control personnel and crane operators.”
Stacking rehearsals help prepare the team for actual processing of launch hardware for Artemis missions. These specific pathfinder segments are inert, full-scale replicas of the actual solid rocket boosters, with the same weight (300,000 pounds) and center of gravity.
During launch hardware processing, the booster segments will be shipped by train to Kennedy from the Northrup Grumman facility in Utah. They will arrive at a processing facility to be configured for final processing, then move to the VAB, where the launch processing team will stack them vertically on the mobile launcher. After the boosters are stacked, the SLS Core Stage will be lowered onto the mobile launcher and will be mated to the boosters.
At launch, the five-segment, 17-story-tall twin boosters will provide 3.6 million pounds of thrust each at liftoff to help launch the SLS carrying Orion on Artemis I, its first uncrewed mission beyond the Moon.
Kennedy Space Center will host multiple programs as part of the 50th anniversary celebration of the Apollo 11 mission. Photo credit: NASA
The Apollo 11 mission, which landed the first two humans on the Moon, remains one of mankind’s most impressive achievements. To honor that historic event on its 50th anniversary, several activities are taking place at Kennedy Space Center in Florida, including multiple shows on NASA TV and the agency’s website:
Tuesday, July 16: Astronaut Michael Collins, who served on that historic mission in July 1969, will start the day with a visit to the Astronaut Crew Quarters in Kennedy’s Neil Armstrong Operations & Checkout Building before participating in the day’s televised events.
From 9:15 to 10 a.m. EDT, Collins will speak with Kennedy Director Bob Cabana at Pad 39A, the site of the July 16, 1969, launch. Cabana was the commander of STS-88, the first International Space Station assembly mission, which celebrated its 20th anniversary on Dec. 10, 2018.
Friday, July 19: Tune in to a pair of special live broadcasts from Kennedy’s Apollo/Saturn V Center. The first, an Apollo 11 show titled “NASA’s Giant Leaps: Past and Future,” is from 1 to 3 p.m. EDT. It will honor the heroes of Apollo, and examine NASA’s future plans, including the Artemis missions that are part of the agency’s Moon and Mars human space exploration. That will be followed by a program titled “STEM Forward to the Moon” from 3 to 3:30 p.m. EDT, featuring kids across the nation participating in Moon landing simulations and other activities.
Remember to tune in to NASA TV and the agency’s website for the special Apollo 11 coverage.
From left, Derrol Nail, NASA Communications, moderates a prelaunch news conference on July 1, 2019, for the agency’s Ascent Abort-2 (AA-2) flight test, with Jenny Devolites, AA-2 Crew Module manager; Mark Kirasich, Orion Program manager; and Randy Bresnik, NASA astronaut, at Kennedy Space Center in Florida. Photo credit: NASA/Kim Shiflett
With weather at 80 percent go for launch and everything proceeding as planned, optimism and enthusiasm were high at Monday morning’s Ascent Abort-2 flight test preview news conference at Kennedy Space Center in Florida.
“We are incredibly excited,” said Jenny Devolites, Ascent Abort-2 crew module manager and test conductor. “It’s such an honor to be a part of this activity and to have this opportunity.”
The Ascent Abort-2 flight test of the launch abort system for NASA’s Orion spacecraft, featuring a test version of the crew module, will lift off from Space Launch Complex 46 at Cape Canaveral Air Force Station Tuesday, July 2. The four-hour launch window opens at 7 a.m. EDT. NASA TV will broadcast launch activities, starting at 6:40 a.m. A postlaunch briefing is scheduled for approximately two hours after launch. Audio of this briefing will stream live on the agency’s website.
Orion will help pave the way for Artemis missions with astronauts to the Moon and then Mars.
“This test is extremely important,” said Mark Kirasich, Orion program manager. “Our Launch Abort System is a key safety feature of the spacecraft — it will protect the crew members who fly onboard Orion during the most challenging part of the mission, which is the ascent phase.”
Ascent Abort-2 will verify Orion’s abort system can pull the crew module away from an emergency during its ascent to space. The two main objectives: execute the abort by demonstrating it can be completed end to end, and collect key data. There are approximately 900 sensors — including temperature sensors, pressure sensors and microphones —located throughout the vehicle.
At liftoff, the booster will provide about 500,000 pounds of thrust. It will take 55 seconds to ascend to 31,000 feet, traveling more than 800 mph, at which point the abort will be initiated and the abort motor will ignite. Also igniting will be the attitude control motor, which provides steering.
Twenty-seven seconds after the abort, the jettison motor will ignite, pulling away the Launch Abort System from the crew module. The crew module will then free-fall and descend back to the ocean. As a backup communication system, 12 ejectable data recorders eject into the water in pairs. The highest altitude reached will be about 45,000 feet.
“It’s certainly a very exciting test for us tomorrow because it is so important,” NASA astronaut Randy Bresnik said. “The neat part is the next time this whole Launch Abort System flies, there will be crew underneath it in Artemis 2.”
NASA will host a preview news conference for the Ascent Abort-2 flight test of the launch abort system for NASA’s Orion spacecraft at 11:30 a.m. Monday, July 1, at NASA’s Kennedy Space Center in Florida. The flight test will help pave the way for Artemis missions with astronauts to the Moon and then Mars.
The launch and preview news conference will air on NASA TV and the agency’s website. Participants include:
Mark Kirasich, Orion program manager
Jenny Devolites, Ascent Abort-2 test conductor
Randy Bresnik, NASA astronaut
The blog will feature highlights from the preview news conference.
The AA-2 flight test’s four-hour launch window opens at 7 a.m. EDT Tuesday, July 2. A test version of the crew module will launch from Space Launch Complex 46 at Cape Canaveral Air Force Station in Florida. NASA TV coverage will begin at 6:40 a.m.