NASA’s Landsat 9 Science Briefing on Tap Today

Landsat satellite image of the sands and seaweed in the Bahamas.
Since 1972, Landsat has monitored Earth’s land and coastal regions, contributing to nearly 50 years of free and publicly available data from the mission – the longest data record of Earth’s landscapes taken from space. In this Landsat satellite image, the sands and seaweed in the Bahamas create multicolored, fluted patterns. Photo credit: NASA/GSFC/Landsat

Officials from NASA and the U.S. Geological Survey (USGS) will discuss the launch of the Landsat 9 satellite during a science briefing at 10 a.m. PDT (1 p.m. EDT) Friday, Sept. 24.

The Landsat 9 launch is targeted to lift off Monday, Sept. 27, from Space Launch Complex-3 at Vandenberg Space Force Base in California, with the 30-minute launch window starting at 11:11 a.m. PDT (2:11 p.m. EDT). The science briefing will air live on NASA TV, the NASA app, and the agency’s website.

Data from Landsat 9 will add to nearly 50 years of free and publicly available data from the Landsat program. The Landsat program is the longest-running enterprise for acquisition of satellite imagery of Earth. It is a joint NASA/USGS program. Researchers harmonize Landsat data to detect the footprint of human activities and measure the effects of climate change on land over decades.

Once fully operational in orbit, Landsat 9 will replace Landsat 7 and join its sister satellite, Landsat 8, in continuing to collect data from across the planet every eight days. This calibrated data will continue the Landsat program’s critical role in monitoring land use and helping decision-makers manage essential resources including crops, water resources, and forests.

Briefing participants, in speaking order, are:

  • Jeff Masek, Project Scientist, NASA’s Goddard Space Flight CenterLandsat 9 mission logo
  • Chris Crawford, Project Scientist, USGS
  • Alyssa Whitcraft, Associate Director and Program Manager, NASA Harvest Consortium
  • Del Jenstrom, Landsat 9 Project Manager, NASA’s Goddard Space Flight Center
  • Brian Sauer, Landsat 9 Project Manager, USGS
  • Sabrina Chapman, Manager, System Engineering, Northrop Grumman Space Systems
  • Sarah Lipscy, OLI-2 Senior Engineer, Ball Aerospace & Technologies Corp.

NASA’s Launch Services Program, based at Kennedy Space Center, is managing the launch. NASA’s Goddard Space Flight Center will manage the mission. Teams from Goddard also built and tested one of the two instruments on Landsat 9, the Thermal Infrared Sensor 2 (TIRS-2) instrument. TIRS-2 will use thermal imaging to make measurements that are used to calculate soil moisture and detect the health of plants.

The USGS Earth Resources Observation and Science Center in Sioux Falls, South Dakota, will operate the mission and manage the ground system, including maintaining the Landsat archive. Ball Aerospace in Boulder, Colorado, built and tested the Operational Land Imager 2 (OLI-2) instrument, another imaging sensor that provides data in the visible, near infrared, and shortwave infrared portions of the spectrum. United Launch Alliance is the rocket provider for Landsat 9’s launch. Northrop Grumman in Gilbert, Arizona, built the Landsat 9 spacecraft, integrated it with instruments, and tested the observatory.

For more information about Landsat, visit: https://landsat.gsfc.nasa.gov and https://www.usgs.gov/landsat.

Learn more about NASA’s Launch Services Program at: https://www.nasa.gov/centers/kennedy/launchingrockets/index.html.

Stay connected with the mission on social media, and let people know you’re following it on Twitter, Facebook, and Instagram using the hashtag #Landsat and tag these accounts:

Twitter: @NASA, @NASAEarth, @NASA_Landsat, @NASASocial, @NASA_LSP, @NASA360, @SLDelta30
Facebook: NASA, NASA Earth, NASA LSP, SLDelta30
Instagram: NASA, NASAEarth, Vandenberg_AFB

NASA’s Lucy Prepares for Journey to Trojan Asteroids

NASA's Lucy spacecraft unloaded at Kennedy Space Center
The shipping container holding NASA’s Lucy spacecraft is unloaded from a United States Air Force C-17 cargo plane, stationed out of Charleston Air Force Base in South Carolina, on the runway of the Launch and Landing Facility at Kennedy Space Center in Florida on July 30, 2021. From there, the spacecraft was moved to the Astrotech Space Operations payload processing facility in nearby Titusville. Photo credit: NASA/Kim Shiflett

Launch preparations for NASA’s Lucy spacecraft are well underway at an Astrotech Space Operations processing facility in Titusville, Florida. The spacecraft arrived at the agency’s Kennedy Space Center on July 30, 2021, and shortly after its arrival, was transported to Astrotech’s facility nearby to undergo prelaunch processing.

The latest milestone occurred on Sept. 9, when Lucy was attached to the payload adapter. This is the physical structure that will secure the spacecraft to the launch vehicle – in this case, a United Launch Alliance Atlas V rocket. Closer to launch, the payload adapter will be attached to the rocket’s second stage.

Liftoff of the Atlas V is scheduled for Oct. 16 from Cape Canaveral Space Force Station, and the launch is being managed by NASA’s Launch Services Program based at Kennedy – America’s multi-user spaceport.

Lucy will be the first space mission to study the Jupiter Trojan asteroids. These asteroids are thought to be remnants of the initial material that formed the planets within the solar system. Over the course of 12 years, Lucy will visit eight different asteroids, providing researchers and scientists with a never-before-seen glimpse into the origins of our solar system.

NASA and United Launch Alliance Update Landsat 9 Target Launch Date

Landsat 9 mission logoNASA and United Launch Alliance currently are reviewing the launch date for the Landsat 9 spacecraft scheduled to launch from Vandenberg Space Force Base in California. Attaching the spacecraft to the Atlas V rocket has been delayed due to out-of-tolerance high winds for the operation and conflicts with other customers using the Western Range.

The Landsat 9 mission now is expected to launch from Vandenberg’s Space Launch Complex 3 no earlier than Monday, Sept. 27, 2021.

Landsat 9 is a joint NASA and U.S. Geological Survey (USGS) mission that continues the legacy of monitoring Earth’s land and coastal regions, which began with the first Landsat in 1972.

Starliner Returns to Factory, Preparations Underway to Resolve Valve Issue

OFT-2 Starliner spacecraft
Boeing’s Starliner spacecraft returned Aug. 19, 2021, from the United Launch Alliance Vertical Integration Facility to the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida, where teams will work to diagnose and resolve a valve issue detected during the Aug. 3 launch attempt of NASA Boeing’s Orbital Flight Test-2. Photo credit: Boeing

Teams from Boeing and United Launch Alliance (ULA) safely returned the CST-100 Starliner to its production facility in Florida on Aug. 19 for continued work on the spacecraft’s service module propulsion system.

The Starliner Orbital Flight Test-2 spacecraft was removed from its Atlas V rocket inside the Vertical Integration Facility at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida and returned to the Commercial Crew and Cargo Processing Facility on NASA’s Kennedy Space Center.

The team now will perform propulsion system checkouts inside the factory’s hazardous processing area and determine the appropriate vehicle configuration for accessing and analyzing the system further. NASA and Boeing will recommend forward work as part of a formal process designed to aid in determining root cause and remediation steps.

In the weeks ahead, engineering teams from NASA and Boeing will work to diagnose and ultimately resolve a valve issue detected during the Aug. 3 countdown for NASA’s Boeing Orbital Flight Test-2, and resulted in the decision to postpone the launch destined for the International Space Station.

NASA, Boeing, and ULA will establish a new launch date once the issue is resolved.

NASA, Boeing to Move Starliner to Production Facility for Propulsion System Evaluation

Boeing's CST-100 Starliner spacecraft is in view in the United Launch Alliance Vertical Integration Facility at Space Launch Complex 41 on Aug. 9, 2021.
Boeing’s CST-100 Starliner spacecraft is in view in the United Launch Alliance Vertical Integration Facility at Space Launch Complex 41 on Aug. 9, 2021. Photo credit: Boeing

NASA and Boeing have decided to postpone the launch of Orbital Flight Test-2 to the International Space Station as teams continue work on the CST-100 Starliner propulsion system.

Engineering teams have been working to restore functionality to several valves in the Starliner propulsion system from inside United Launch Alliance’s Vertical Integration Facility that did not open as designed during the launch countdown for the Aug. 3 launch attempt. The valves connect to thrusters that enable abort and in-orbit maneuvering.

“We made a lot of progress to open the valves from inside the Vertical Integration Facility, and the NASA-Boeing teams did a great job doing everything we could to get ready for this launch opportunity,” said Kathryn Lueders, associate administrator for NASA’s Human Exploration and Operations Mission Directorate. “Although we wanted to see Starliner fly in this window, it’s critical that our primary focus is the safety of the crew transportation system – for the safety of the space station and the crew members that will be flying on these vehicles. We’ll only fly this test when we think we are ready, and can complete the mission objectives.”

Inside the VIF, Boeing was able to prompt nine of 13 valves open that previously were in the closed position using commanding, mechanical, electrical and thermal techniques. Teams will now begin the process to move Starliner back to Boeing’s Commercial Crew and Cargo Processing Facility in Florida for deeper-level troubleshooting of four propulsion system valves that remain closed and more detailed analysis on the spacecraft.

“Mission success in human spaceflight depends on thousands of factors coming together at the right time,” said John Vollmer, vice president and program manager, Boeing’s Commercial Crew Program. “We’ll continue to work the issue from the Starliner factory and have decided to stand down for this launch window to make way for other national priority missions.”

NASA, Boeing and ULA will establish a new launch date once the issue is resolved.

NASA’s Lucy Spacecraft Readies for Launch at Kennedy

The shipping container holding NASA's Lucy spacecraft is unloaded from an Air Force C-17 cargo plane on the runway of the Launch and Landing Facility at Kennedy Space Center in Florida on July 30, 2021.
The shipping container holding NASA’s Lucy spacecraft is unloaded from an Air Force C-17 cargo plane on the runway of the Launch and Landing Facility at Kennedy Space Center in Florida on July 30, 2021. Photo credit: NASA/Kim Shiflett

NASA’s Lucy spacecraft is now in Florida – its final Earth-bound destination – before embarking on a mission to study the Jupiter Trojan asteroids. A United States Air Force C-17 cargo plane from Charleston Air Force Base in South Carolina, flew to Buckley Space Force Base in Aurora, Colorado, to pick up the spacecraft. The aircraft, with Lucy safely inside, then touched down at the Launch and Landing Facility runway at NASA’s Kennedy Space Center on July 30, 2021. From there, the spacecraft was transported to an Astrotech Space Operations processing facility in nearby Titusville to undergo final preparations before liftoff.

Named after a fossilized human ancestor whose skeleton provided discoverers insight into humanity’s evolution, the Lucy mission will do much of the same, providing scientists and researchers a look into the origins of our solar system.

The Trojan asteroids orbit the Sun in two groups: one group lies ahead of Jupiter while the other trails behind. Stabilized by both the Sun and Jupiter, those swarms of asteroids are thought to be remnants of the initial material that formed the planets within the solar system. Throughout the duration of the mission, Lucy will visit eight different asteroids over the span of 12 years, unlocking new information about the primitive bodies that created our early solar system.

Lucy is scheduled to launch on a United Launch Alliance Atlas V rocket from Cape Canaveral Space Force Station on Oct. 16. The launch is being managed by the NASA’s Launch Services Program based at Kennedy, America’s multi-user spaceport. The mission will be the first to study the Trojans.

NASA, Boeing Continue to Work Toward Understanding Starliner Service Module Valve Performance Issue

Boeing Starliner spacecraft
On July 29, 2021, Boeing’s CST-100 Starliner spacecraft is shown on top of the United Launch Alliance (ULA) Atlas V rocket in ULA’s Vertical Integration Facility.

NASA continues to work side-by-side with Boeing to understanding the CST-100 Starliner’s service module valve performance, including the unexpected indications some of the valves were in the closed position during its Aug. 3 launch attempt of Orbital Flight Test-2 (OFT-2).

With troubleshooting ongoing in the United Launch Alliance Vertical Integration Facility at NASA’s Kennedy Space Center in Florida, where Starliner will be powered and run through various procedures to help understand the issue, NASA will move forward with the launch and berthing of an important cargo mission to the International Space Station.

Northrop Grumman’s Cygnus spacecraft is scheduled to launch on the company’s Antares rocket at 5:56 p.m. Tuesday, Aug. 10, from NASA’s Wallops Flight Facility in Wallops Island, Virginia, with capture and berthing scheduled two days later at about 6:10 a.m. EDT Thursday, Aug. 12.

In parallel, managers and engineers with NASA and Boeing will continue to evaluate schedules based on where the troubleshooting efforts take them before deciding when the next official launch for the OFT-2 mission will take place.

NASA, Boeing Continue Starliner Data Analysis

Atlas V rocket with Starliner on launch pad
A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft onboard is seen on the launch pad on Thursday, July 29, 2021, at Space Launch Complex 41 in preparation for the Orbital Flight Test-2 (OFT-2) mission at Cape Canaveral Space Force Station in Florida. Photo Credit: (NASA/Aubrey Gemignani)

NASA and Boeing are continuing to work through steps to determine what caused the unexpected valve position indications on the CST-100 Starliner propulsion system.

The United Launch Alliance Atlas V with the Starliner spacecraft on top will be returned to its Vertical Integration Facility (VIF) at Launch Complex-41 on Cape Canaveral Space Force Station Thursday where engineers will have direct access to Starliner for continued troubleshooting.

The data will drive any corrective measures that may be necessary to ensure Starliner is ready for launch. When NASA’s Commercial Crew Program and Boeing Space agree the issue is resolved, a new launch opportunity will be selected, taking into account the readiness of all parties involved.

“The Boeing and NASA teams are working methodically to understand what caused the valve indications on the Starliner service module propulsion system,” Steve Stich, manager of the Commercial Crew Program, said. “The troubleshooting in the Vertical Integration Facility will help focus on potential causes and next steps before we fly the OFT-2 mission.”

Early in the launch countdown for the Tuesday, Aug. 3 launch attempt, engineers detected indications that not all of Starliner’s propulsion system valves were in the proper configuration needed for launch of the company’s second uncrewed orbital flight test to the International Space Station, a mission designed to test the end-to-end capabilities of the crew-capable system as part of NASA’s Commercial Crew Program.

Mission teams decided to halt the countdown to further analyze the issue, which was conducted later Tuesday via several steps to troubleshoot the incorrect valve indications, including cycling the service module propulsion system valves.

After presenting the data to NASA and Boeing managers, it was decided to relocate the Atlas V and Starliner to the VIF for further inspection and testing where access to the spacecraft is available. Engineering teams have ruled out a number of potential causes, including software, and the direct access is required to continue the assessment.

“This mission is extremely important for the Commercial Crew Program on the path to the Boeing Crewed Flight Test,” Stich said. “We will fly the mission when we are ready. I am extremely proud of the NASA and Boeing teams for their professionalism, perseverance, and methodical approach to solving complex problems.”

NASA and Boeing will take whatever time is necessary to ensure Starliner is ready for its important uncrewed flight test to the space station and will look for the next available opportunity after resolution of the issue.

What You Need to Know about NASA’s Boeing Orbital Flight Test 2

The Boeing CST-100 Starliner spacecraft is secured atop a United Launch Alliance Atlas V rocket at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Space Force Station in Florida on July 17, 2021. Starliner will launch on the Atlas V for Boeing’s second Orbital Flight Test (OFT-2) for NASA’s Commercial Crew Program. The spacecraft rolled out from Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center earlier in the day.
The Boeing CST-100 Starliner spacecraft is secured atop a United Launch Alliance Atlas V rocket at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Space Force Station in Florida on July 17, 2021. Starliner will launch on the Atlas V for Boeing’s second Orbital Flight Test (OFT-2) for NASA’s Commercial Crew Program. The spacecraft rolled out from Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center earlier in the day. Photo credit: Boeing/John Grant

Leerlo en español aquí.

NASA and Boeing are taking another major step on the path to regular human spaceflight launches to the International Space Station on American rockets and spacecraft from American soil with the second uncrewed flight test of Boeing’s CST-100 Starliner as part of the agency’s Commercial Crew Program.

NASA’s Boeing Orbital Flight Test-2 (OFT-2) is targeting launch of the Starliner spacecraft on a United Launch Alliance Atlas V rocket at 2:53 p.m. EDT Friday, July 30, from Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida. Starliner is expected to arrive at the space station for docking about 24 hours later with more than 400 pounds of NASA cargo and crew supplies.

The mission will test the end-to-end capabilities of Starliner from launch to docking, atmospheric re-entry, and a desert landing in the western United States. OFT-2 will provide valuable data that will help NASA certify Boeing’s crew transportation system to carry astronauts to and from the space station.

Read the full feature here.

Space Test Program-3 Launch Update

The launch of a United Launch Alliance Atlas V 551 rocket carrying the Space Test Program-3 (STP-3) mission for the U.S. Space Force’s Space and Missile Systems Center has been delayed to evaluate launch vehicle readiness. A new launch date will be released when it is available. NASA’s Laser Communications Relay Demonstration (LCRD) is a payload on STPSat-6, the primary spacecraft on STP-3, and will demonstrate laser communications technologies from geosynchronous orbit about 22,000 miles above Earth upon launch.

To stay updated about LCRD and laser communications, visit: https://www.nasa.gov/lasercomms.

To learn more about STP-3, visit: www.ulalaunch.com.