Educational CubeSats Set to Launch to the Space Station

A group of high school students work on their CubeSat, TJREVERB.
A group of students at Thomas Jefferson High School for Science and Technology work on their CubeSat, TJREVERB (Thomas Jefferson Research and Education Vehicle for Evaluating Radio Broadcasts). Photo credit: Thomas Jefferson High School

Four small, shoebox-sized satellites are being prepared to launch to the International Space Station as part of NASA’s Educational Launch of Nanosatellites (ELaNa) 49 mission. The small satellites, called CubeSats, will study a range of topics – from satellite communication methods to space weather to testing technology for robotic assembly of large telescopes.

The CubeSats will hitch a ride on the SpaceX Falcon 9 rocket and Dragon spacecraft set to deliver additional science, crew supplies, and hardware to the station during the company’s 26th commercial resupply services mission for NASA. Launch is targeted at 4:19 p.m. EST from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.

Satellite Communications

An up-close view of the University of Michigan's Measurement of Actuator Response In Orbit (MARIO) CubeSat.
Seen here is an up-close view of the University of Michigan’s Measurement of Actuator Response In Orbit (MARIO) CubeSat. Photo credit: University of Michigan

The first U.S. high school to send a CubeSat to space back in 2013, Thomas Jefferson High School for Science and Technology’s Research and Education Vehicle for Evaluating Radio Broadcasts satellite aims to study the use of iridium as a primary radio communication method. Additionally, the satellite will demonstrate using a passive magnet onboard and the Earth’s magnetic field for stabilization rather than using an attitude determination and control system for pointing accuracy and stabilization for iridium. What makes this satellite even more notable is that it was a system’s engineering project. The students selected space-grade parts, wired the electronics for the satellite, wrote the drivers to control the different systems, and coded the flight software.

“What’s special about TJREVERB isn’t necessarily the mission, it’s what we did. These kids literally built a satellite the way the industry would build a satellite; we selected parts from vendors and got those parts to work together,” said Kristen Kucko, robotics lab director and the school’s space faculty advisor. “This is an engineering feat.”

Structure Testing

The University of Michigan’s Measurement of Actuator Response In Orbit (MARIO) is a technology demonstration that will show how test structures made of a piezoelectric material – a type of material that bends when electricity is applied and can also generate electricity when bent – perform in low-Earth orbit. This will allow the spacecraft to bend or move without any rotating parts and could one day be used to point and adjust telescope mirrors more accurately.

Space Weather

An up-close view of NASA Marshall Space Flight Center's Scintillation Prediction Observations Research Task (SPORT) CubeSat.
Seen here is an up-close view of NASA Marshall Space Flight Center’s Scintillation Prediction Observations Research Task (SPORT) CubeSat. Photo credit: NASA

NASA Goddard Space Flight Center’s Plasma Enhancement in The Ionosphere-Thermosphere Satellite (petitSat) will study density irregularities in the Earth’s ionosphere – a tiny fraction of the atmosphere made of plasma, or ionized gas. During long distance radio communication, the ionosphere reflects radio waves back to Earth. Disturbances in the upper atmosphere can change the shape of the ionosphere, creating a funhouse mirror effect and distorting these radio waves. The mission will use two instruments to measure the structure and motion of plasma in the ionosphere resulting from these changes in the upper atmosphere to better understand how these affect satellite communications.

NASA Marshall Space Flight Center’s Scintillation Prediction Observations Research Task (SPORT) will also look to the ionosphere to study space weather. The joint mission between the U.S. and Brazil will examine the formation of plasma bubbles, which sometimes scatter radio signals. Understanding how these bubbles are formed and how their evolution impacts communication signals can help scientists improve the reliability of communication and navigation systems.

“The more we learn about space weather – and how to predict it – the better we can protect our astronauts, spacecraft, and technology,” said Shelia Nash-Stevenson, SPORT project manager.

All of these were selected through NASA’s CubeSat Launch Initiative (CSLI), which provides U.S. educational institutions, nonprofits with an education/outreach component, informal educational institutions (museums and science centers), and NASA centers with access to space at a low cost. Once the CubeSat selections are made, NASA’s Launch Services Program works to pair them with a launch that is best suited to carry them as auxiliary payloads, taking into account the planned orbit and any constraints the CubeSat missions may have.

For more information about NASA’s CSLI, visit:

https://www.nasa.gov/directorates/heo/home/CubeSats_initiative

NASA Sets Coverage for Next SpaceX Resupply Launch to Space Station

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule lifts off from Launch Complex 39A at NASA’s Kennedy Space Center on the company’s 22nd Commercial Resupply Services mission to the International Space Station.
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule lifts off from Launch Complex 39A at NASA’s Kennedy Space Center on the company’s 22nd Commercial Resupply Services mission to the International Space Station.
Credits: NASA/Kennedy Space Center

NASA and SpaceX are targeting 4:19 p.m. EST Monday, Nov. 21, to launch the company’s 26th commercial resupply mission to the International Space Station.

Liftoff will be from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. SpaceX’s Dragon cargo spacecraft will deliver new science investigations, supplies, and equipment for the international crew.

Live launch coverage will air on NASA Television, the NASA app, and the agency’s website, with prelaunch events starting Friday, Nov. 18. Follow all events at: https://www.nasa.gov/live.

Click here to read the full advisory.

NASA to Launch Small Satellites on Next SpaceX Cargo Mission

Middle schoolers are sending their science fair project to space, one of five CubeSats on a ride-share on a Commercial Resupply Services, CRS-25. The CapSat-1 team are three 7th-grade students from the Weiss School in Palm Beach Gardens, Florida.
Middle schoolers are sending their science fair project to space, one of five CubeSats on a ride-share on the 25th Commercial Resupply Services, CRS-25. The CapSat-1 team are three 7th-grade students from the Weiss School in Palm Beach Gardens, Florida. Photo credit: Weiss School

NASA’s Launch Services Program is preparing to send five CubeSats to the International Space Station as part of the ELaNa 45 (Educational Launch of Nanosatellites) mission aboard SpaceX’s 25th Commercial Resupply Services (CRS-25) mission for NASA. Liftoff is scheduled for June 7 from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.

The small satellites were selected through NASA’s CubeSat Launch Initiative, which provides low-cost access to space for U.S. educational institutions, NASA centers, and others to develop and demonstrate novel technologies in space and to inspire and grow the next generation of scientists, engineers, and technologists.

The CubeSats were developed by the Massachusetts Institute of Technology; The Weiss School in Palm Beach Gardens, Florida; NASA’s Ames Research Center in Silicon Valley, California; Embry-Riddle Aeronautical University in Daytona Beach, Florida; and the University of South Alabama in Mobile. The CubeSats will be deployed from the space station.

NASA has selected over 200 CubeSat missions from more than 100 unique organizations representing 42 states, the District of Columbia, and Puerto Rico through the CubeSat Launch Initiative since 2010. To date, 134 CubeSat missions have launched into space through ELaNa rideshare opportunities.

Launch Readiness Review Complete Ahead of 24th SpaceX Resupply Mission

CRS-23 Cargo Dragon
A SpaceX Falcon 9 rocket, topped with the Dragon spacecraft, is seen inside the company’s hangar at NASA’s Kennedy Space Center in Florida on Aug. 24, 2021, prior to being rolled out to the launch pad in preparation for the 23rd commercial resupply services launch. The mission delivered science investigations, supplies, and equipment to the crew aboard the International Space Station. Photo credit: SpaceX

Joint teams from NASA and SpaceX have completed a launch readiness review ahead of the company’s 24th commercial resupply services mission to the International Space Station for the agency. Liftoff is targeted for Tuesday, Dec. 21, at 5:06 a.m. EST from Launch Complex 39A at the agency’s Kennedy Space Center in Florida, and the live launch broadcast will begin at 4:45 a.m.

SpaceX’s Falcon 9 rocket and Dragon spacecraft have been mated inside the company’s hangar at Launch Complex 39A. Rollout to the launch pad is scheduled for Sunday, Dec. 19, when teams from SpaceX will then raise the Falcon 9 – with Dragon atop – into vertical position in preparation for launch.

Tune in on NASA Television, the NASA app, or the agency’s website at noon Monday, Dec. 20, for the prelaunch news conference from Kennedy’s Press Site with the following participants:

  • Joel Montalbano, manager, NASA’s International Space Station Program
  • Bob Dempsey, acting deputy chief scientist, NASA’s International Space Station Program
  • Sarah Walker, director, Dragon Mission Management, SpaceX
  • Arlena Moses, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron

SpaceX’s Dragon spacecraft will deliver 6,500 pounds of new science investigations, supplies, and equipment for the international crew. Research includes a protein crystal growth study that could improve how cancer treatment drugs are delivered to patients and a handheld bioprinter that could one day be used to print tissue directly onto wounds for faster healing. Also aboard are experiments from students at several universities as part of the Student Payload Opportunity with Citizen Science (SPOCS) program as well as an investigation from the makers of Tide that examines detergent efficacy in microgravity.

SpaceX CRS-20 Prelaunch News Conference

SpaceX CRS-20 mission patch.A prelaunch news conference for SpaceX’s 20th Commercial Resupply Services mission for NASA to the International Space Station is set for 4 p.m. EST today.

Participants include:

  • Joel Montalbano, manager for International Space Station Program
  • Jennifer Buchli, deputy chief scientist for International Space Station Program
  • Hans Koenigsmann, vice president, Build and Flight Reliability at SpaceX
  • Mike McAleenan, launch weather officer, 45th Space Wing, U.S. Air Force

Watch the news conference on NASA Television.

NASA commercial cargo provider SpaceX is targeting 11:50 p.m. EST tonight, March 6, for the launch of resupply mission to the space station.

Follow the launch countdown tonight beginning at 11:30 p.m. on NASA TV and the launch blog. To learn more about the SpaceX CRS-20 mission, visit the mission homepage at http://www.nasa.gov/spacex.

“What’s on Board” Briefing for SpaceX CRS-20 Mission

Airbus workers unpack the Bartolomeo platform in the Space Station Processing Facility high bay at NASA’s Kennedy Space Center in Florida on Jan. 30, 2020.
Airbus workers unpack the Bartolomeo platform in the Space Station Processing Facility high bay at NASA’s Kennedy Space Center in Florida on Jan. 30, 2020. Bartolomeo was manufactured by Airbus Defence and Space. The platform will be delivered to the International Space Station aboard SpaceX’s 20th Commercial Resupply Services (CRS-20) mission for the agency. The platform will attach to the exterior of the space station’s European Columbus Module. Photo credit: NASA/Ben Smegelsky

A briefing about the science payloads for delivery on the SpaceX CRS-20 mission to the International Space Station is set for today at 3 p.m. Tune in to NASA Television. Participants include:

  • Jennifer Buchli, deputy chief scientist for NASA’s International Space Station Program Science Office, who will share an overview of the research being conducted aboard the space station and how it benefits exploration and humanity.
  • Michael Roberts, interim chief scientist for the International Space Station U.S. National Laboratory, who will discuss the lab’s work in advancing science in space, and in developing partnerships that drive industrialization through microgravity research.
  • Bill Corely, director of business development for Airbus Defence and Space, and Bartolomeo Project Manager Andreas Schutte, who will discuss Bartolomeo, a new commercial research platform from ESA (European Space Agency), set to be installed on the exterior of the orbiting laboratory.
  • Chunhui Xu, associate professor of Emory University School of Medicine, and principle investigator for the Generation of Cardiomyocytes from Induced Pluripotent Stem Cells (MVP Cell-03) experiment, who will discuss the study on the generation of specialized heart muscle cells for use in research and clinical applications.
  • Paul Patton, senior manager, front end innovation and regulatory for Delta Faucet, and Garry Marty, principal product engineer for Delta Faucet, who will discuss the Droplet Formation Study, which evaluates water droplet formation and water flow of Delta Faucet’s H2Okinetic showerhead technology. This research in microgravity could help improve technology, creating better performance and improved user experience while conserving water and energy.
  • Aaron Beeler, professor of medicinal chemistry at Boston University, and principal investigator, and co-investigator Matthew Mailloux of Flow Chemistry Platform for Synthetic Reactions on ISS, which will study the effects of microgravity on chemical reactions, as a first step toward on-demand chemical synthesis on the space station.