NASA Satellites Launch Aboard Virgin Orbit’s LauncherOne

Cornell University students work with the Pathfinder for Autonomous Navigation (PAN), a CubeSat that is part of NASA's 29th ELaNa mission.
Cornell University students work with the Pathfinder for Autonomous Navigation (PAN), a CubeSat that is part of NASA’s 29th ELaNa mission. Photo credit: Virgin Orbit

Virgin Orbit’s LauncherOne rocket detached from the company’s CosmicGirl aircraft at approximately 5:53 p.m. EST (2:53 p.m. PST) on Jan. 13, 2022,  launching NASA’s 29th Educational Launch of Nanosatellites (ELaNa) mission and the 13th CubeSat in the TechEdSat series. This launch, also known as STP-27VPB, lifted off at approximately 4:39 p.m. EST (1:39 p.m. PST) from Mojave Air and Space Port, California.

Cornell’s Pathfinder for Autonomous Navigation (PAN), the 29th ELaNa mission, will launch two small research satellites known as CubeSats to low-Earth orbit to demonstrate autonomous rendezvous at a low cost. PAN is the first CubeSat mission to attempt docking between two CubeSats and will represent one of the most advanced autonomous CubeSat systems that has flown to date.

CubeSats are a class of research spacecraft called nanosatellites, built to standard units, or “U,”  of 4 inches cubed. Often included as secondary payloads, CubeSats can be 1U, 2U, 3U, or 6U in size, typically weighing less than 3 pounds per unit and designed to carry out unique tasks once deployed into low-Earth orbit.

The PAN CubeSats, each measuring approximately 8 inches x 12 inches, feature a cold gas propulsion system, reaction wheel-based attitude control, and GPS navigation. A few months after launch, the satellites will match each other’s orbits and rendezvous to demonstrate future capabilities for on-orbit assembly.

The nanosatellites will use carrier-differential GPS to autonomously conduct rendezvous and docking operations. This method allows position measurement accurate to within several centimeters. If successful, the technology demonstrated by PAN will reduce the mass and complexity associated with traditional rendezvous and docking systems.

PAN was selected through NASA’s CubeSat Launch Initiative (CSLI) and assigned to this mission by the agency’s Launch Services Program (LSP) based at Kennedy Space Center in Florida. CSLI enables the launch of CubeSat projects designed, built, and operated by students, teachers, faculty, NASA centers, and nonprofit organizations. Managed by LSP, ELaNa missions provide a deployment opportunity or ride-share launches to space for the selected CubeSats.

The TechEdSat-13 team prepares the spacecraft for flight at Virgin Orbit’s payload processing facility in Long Beach, California. Photo credit: Virgin Orbit

TechEdSat-13, from NASA’s Ames Research Center in California’s Silicon Valley, is a 3U nanosatellite that carries a unique artificial intelligence/machine learning (AI/ML) module featuring the first orbital flight of a neuromorphic processor. This processor, the Intel Loihi, permits fast and efficient execution of AI/ML algorithms through a unique architecture that, in some ways, mimics the human brain.

In addition, there is a unique exo-atmospheric brake that will help rapidly de-orbit this and future nanosatellites. With this exo-brake technology, TechEdSat-13 will help address the accumulation and efficient disposal of orbital debris. This effort also helps to set the stage for autonomous navigation for nanosatellites to drop from orbit and reach their planned destination on Earth.

The TechEdSat flight series involves university interns and early career aerospace professionals. TechEdSat-13 was funded by various research groups within NASA, and the neuromorphic processor was provided by the Air Force Research Laboratory  Information Directorate.

ELaNa 38 CubeSats: Small Satellites Making a Big Impact

One of the solar panels being installed onto the GASPACS CubeSat during final assembly.
A student from Utah State University installs one of the solar panels onto the GASPACS CubeSat during final assembly. Photo credit: Jack Danos, Team Coordinator, Get Away Special Team, Utah State University

Launching aboard SpaceX’s 24th Commercial Resupply Services mission to the International Space Station, NASA’s 38th Educational Launch of Nanosatellites (ELaNa) mission strengthens the initiative’s aim of providing opportunities for small satellite payloads built by universities, high schools, NASA Centers, and non-profit organizations. Liftoff from NASA’s Kennedy Space Center in Florida is scheduled for Tuesday, Dec. 21, at 5:06 a.m. EST.

The DAILI spacecraft in its stowed configuration and ready for installation into the NanoRacks CubeSat Deployer.
The 6U DAILI spacecraft is shown in its stowed configuration before installation into the NanoRacks CubeSat Deployer. Photo credit: Nancy Pastor, The Aerospace Corporation

The four small satellites, or CubeSats, that comprise the 38th ELaNa mission include designs from Aerospace Corporation in El Segundo, California; Utah State University in Logan, Utah; Georgia Tech Research Corporation in Atlanta, Georgia; and NASA’s Kennedy.

CubeSats are a class of research spacecraft called nanosatellites, built to standard dimensions – Units or “U” – of 4 inches cubed. Often included as secondary payloads, CubeSats can be 1U, 2U, 3U, or 6U in size, typically weighing less than 3 pounds per U and designed to carry out unique tasks once deployed into low-Earth orbit.

The DAILI spacecraft is shown in its mission configuration with the solar arrays deployed and the Sunshade open. Photo credit: Nancy Pastor, The Aerospace Corporation

The Daily Atmospheric and Ionospheric Limb Imager (DAILI), built by Aerospace Corporation, is a linear 6U CubeSat that images the edge of Earth’s atmosphere to determine daytime density of atmospheric oxygen. The region of atmosphere it will study – roughly an altitude of 87 to 180 miles – is difficult to measure and produces uncertain atmospheric models. This investigation could help improve models informing our understanding of dynamics in the upper atmosphere, which can affect satellites and space debris in low-Earth orbit, while improved understanding of how Earth’s atmosphere works could contribute to better forecasting of weather and other atmospheric events.

The Aerospace Corporation – a national nonprofit corporation that operates a federally funded research and development center – designed and developed DAILI based on the company’s Remote Atmospheric and Ionospheric Detection System experiment, which was operational on the space station from 2009 to 2010, enabled DAILI to be designed. The DAILI CubeSat project is led by principal investigator Dr. James Hecht.

The completed GASPACS CubeSat.
The GASPACS CubeSat was built by students from Utah State. Photo credit: Jack Danos, Team Coordinator, Get Away Special Team, Utah State University

An undergraduate team at Utah State University developed the Get Away Special Passive Attitude Control Satellite (GASPACS), a 1U CubeSat with a primary mission to deploy a meter-long inflatable boom in low-Earth orbit and transmit a clear photograph of the deployed boom to Earth. Inflatable structures are compact and lightweight and therefore could serve many useful purposes in space. On this mission, the inflatable boom also will passively stabilize the rotation of the satellite due to aerodynamic drag in orbit.

The GASPACS CubeSat was developed by the university’s Get Away Special Team – an undergraduate, extracurricular research team within the physics department that gives students the opportunity to learn real-world engineering skills by effectively contributing to aerospace research. The team’s principal investigator is Dr. Jan Sojka, head of the university’s physics department.

Vibration Testing of the PATCOOL CubeSat Prototype.
The PATCOOL CubeSat Prototype undergoes vibration testing. Photo credit: NASA

The Passive Thermal Coating Observatory Operating in Low-Earth Orbit (PATCOOL) satellite is a 3U CubeSat sponsored by NASA and developed by students at the University of Florida to investigate the feasibility of using a cryogenic selective surface coating as a more efficient way to passively cool components in space. The team hopes in-orbit testing will validate what ground tests have demonstrated – that this coating should provide a much higher reflectance of the Sun’s irradiant power than any existing coating while still providing far-infrared power emission.

The ADvanced Autonomous MUltiple Spacecraft (ADAMUS) Laboratory at the University of Florida (UF), with funding from NASA’s Launch Services Program (LSP), developed the PATCOOL CubeSat, along with principal investigator, Brandon Marsell, branch chief for LSP’s Environments and Launch Approval, based at Kennedy.

The TARGIT satellite in its deployed state.
The TARGIT satellite is shown in its deployed state. Photo credit: W.C. Hobbs

The Tethering and Ranging mission of the Georgia Institute of Technology (TARGIT) is a 3U CubeSat that seeks to develop and test in orbit an imaging LiDAR system capable of fine detailed topographic mapping while also providing university students with hands-on education in space systems and applications. Additionally, the mission will demonstrate a series of experimental spacecraft technologies, including active tether and inflation systems, 3D-printed components, horizon sensors using low-resolution thermal imagers, and nanocarbon-based solar cells.

GAS team members Cooper Gowan, Andrew Nelson, and Carter Page showing the finished inflatable boom payload.
Utah State University’s GAS team members show the finished inflatable boom payload. Photo credit: Jack Danos, Team Coordinator, Get Away Special Team, Utah State University

Students from Georgia Tech’s School of Aerospace Engineering designed and developed the TARGIT CubeSat, under the tutelage of their professor and principal investigator, Dr. Brian C. Gunter.

The ELaNa 38 mission CubeSats were selected by NASA’s CubeSat Launch Initiative (CSLI) and assigned to the mission by LSP, based at Kennedy. CSLI provides launch opportunities for small satellite payloads built by universities, high schools, NASA Centers, and non-profit organizations.

To date, NASA has selected 220 CubeSat missions, 124 of which have been launched into space, with 37 more missions scheduled for launch within the next 12 months. The selected CubeSats represent participants from 42 states, the District of Columbia, Puerto Rico, and 102 unique organizations.

Stay connected with these CubeSat missions on social media by following NASA’s Launch Services Program on Facebook and Twitter.