Fueling Underway For Artemis I Launch

A view of the Interim Cryogenic Propulsion System in the Multi-Payload Processing Facility at NASA's Kennedy Space Center in Florida.
A view of the Interim Cryogenic Propulsion System inside the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida on Feb. 18, 2021. Photo credit: NASA/Glenn Benson

Teams with NASA’s Kennedy Space Center Exploration Ground Systems and primary contractor, Jacobs, are fueling the Orion service module ahead of the Artemis I mission. The spacecraft currently resides in Kennedy’s Multi-Payload Processing Facility alongside the Interim Cryogenic Propulsion System (ICPS), the rocket’s upper stage that will send Orion to the Moon. After servicing, these elements will be integrated with the flight components of the Space Launch System, which are being assembled in the Vehicle Assembly Building.

Technicians began loading Orion’s service module with oxidizer, which will power the Orbital Maneuvering System main engine and auxiliary thrusters on the European-built service module ahead of propellant loading. These auxiliary thrusters stabilize and control the rotation of the spacecraft after it separates from the ICPS. Once the service module is loaded, teams will fuel the crew module to support thermal control of the internal avionics and the reaction control system. These 12 thrusters steady the crew module and control its rotation after separation from the service module.

Once Orion servicing is complete, teams will fill the ICPS. This liquid oxygen/liquid hydrogen-based system will push the spacecraft beyond the Moon for the test flight under the agency’s Artemis program. In several weeks, when fueling is complete, Orion will move to the center’s Launch Abort System Facility to integrate its launch abort system, and the ICPS will move to the Vehicle Assembly Building to be stacked atop the mobile launcher.

SLS Rocket Stage and Orion Share Space at Kennedy ahead of Artemis I

The ICPS is inside the Multi-Payload Process Facility at Kennedy Space Center on Feb. 18, 2021.
The Space Launch System (SLS) rocket’s interim cryogenic propulsion stage (ICPS) moved into the Multi-Payload Processing Facility February 18, 2021, at NASA’s Kennedy Space Center in Florida for the Artemis I mission. Photo credit: NASA/Glenn Benson

The Space Launch System (SLS) rocket’s interim cryogenic propulsion stage (ICPS) moved into the Multi-Payload Processing Facility February 18, 2021, at NASA’s Kennedy Space Center in Florida alongside one of its flight partners for the Artemis I mission, the Orion spacecraft. Both pieces of hardware will undergo fueling and servicing in the facility ahead of launch by teams from NASA’s Exploration Ground Systems and their primary contractor, Jacobs Technology. The rocket stage and Orion will remain close during their journey to space.

The ICPS is moved into the Multi-Payload Process Facility on Feb. 18, 2021 at Kennedy Space Center.
The interim cryogenic propulsion stage is in view inside the Multi-Payload Processing Facility on Feb. 18, 2021, at Kennedy Space Center. Photo credit: NASA/Glenn Benson

Built by United Launch Alliance and Boeing, the ICPS will be positioned above the core stage and will provide the power needed to give Orion the big push it needs to break out of Earth orbit on a precise trajectory toward the Moon during Artemis I.

This is the first time since the shuttle program that two pieces of flight hardware have been processed inside this facility at the same time. Once final checkouts are complete, the ICPS and Orion will part ways on the ground and be reunited in the Vehicle Assembly Building for integration onto the SLS rocket.

Artemis I will be an integrated flight test of the SLS rocket and Orion spacecraft ahead of the crewed flights to the Moon. Under the Artemis program, NASA will land the first woman and the next man on the lunar surface and establish a sustainable presence at the Moon to prepare for human missions to Mars.

View additional photos here.

NASA’s Space Launch System Receives Another Major Boost

SLS solid rocket boosters
The solid rocket boosters will power the first flight of NASA’s Space Launch System rocket on the Artemis I mission. Photo credit: NASA/Kim Shiflett

The third of five sets of solid rocket boosters for NASA’s Space Launch System (SLS) rocket were placed on the mobile launcher inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The middle segments, painted with the iconic “worm” logo, were lifted onto the launcher by Jacobs and Exploration Ground Systems engineers using the VAB’s 325-ton crane.

The twin boosters will power the first flight of the agency’s new deep space rocket on its first Artemis Program mission. Artemis I will be an uncrewed flight to test the SLS rocket and Orion spacecraft as an integrated system ahead of crewed flights.

NASA Test Directors Eagerly Await Artemis Launch

Charlie Blackwell-Thompson, Jeremy Graeber and Jeff Spaulding in Kennedy Space Center's Launch Control Center
NASA Launch Director Charlie Blackwell-Thompson, above, confers with Senior NASA Test Director Jeff Spaulding, left, and Test, Launch and Recovery Operations Branch Chief Jeremy Graeber in Firing Room 1 at Kennedy Space Center’s Launch Control Center during a countdown simulation. Photo credit: NASA/Cory Huston

By Jim Cawley
NASA’s Kennedy Space Center

Before NASA’s mighty Space Launch System (SLS) rocket can blast off from the agency’s Kennedy Space Center to send the Orion spacecraft into lunar orbit, teams across the country conduct extensive testing on all parts of the system. Guiding that effort at the Florida spaceport are NASA test directors, or NTDs.

NTDs within the Exploration Ground Systems program are in charge of flight and ground hardware testing in Kennedy’s Launch Control Center firing rooms 1 and 2, where activities involved with preparing rockets, spacecraft and payloads for space can be controlled from computer terminals. They are responsible for emergency management actions, helping lead the launch team during all facets of testing, launch and recovery.

NASA’s Artemis missions will land American astronauts on the Moon by 2024, beginning with Artemis I, the uncrewed flight test of SLS and Orion.

“It’s certainly an amazing feeling to be responsible for setting up the building blocks of a new program which will eventually take us to the Moon, Mars and beyond,” said Senior NASA Test Director Danny Zeno.

Senior NASA Test Director Danny Zeno
Senior NASA Test Director Danny Zeno is leading the development of test plans and procedures that are essential to flight and ground hardware for the Artemis missions. Photo credit: NASA

Zeno is leading the development of test plans and procedures that are essential to flight and ground hardware for the Artemis missions. This includes proving the functionality of flight and ground systems for the assembled launch vehicle configuration, verifying the mobile launcher arms and umbilicals operate as expected at launch, and performing a simulated launch countdown with the integrated vehicle in the Vehicle Assembly Building.

The 14-year NTD veteran relishes his hands-on role in successfully testing and launching SLS — the most powerful rocket NASA has ever built.

“It’s very fulfilling,” Zeno said. “What excites me about the future is that the work I’m doing today is contributing to someday having humans living and working on other planets.”

There are 18 people in the NTD office — all of whom must undergo rigorous certification training in the management and leadership of test operations, systems engineering and emergency response. They are in charge of the people, hardware and schedule during active firing room testing.

“The NTD office is at the center of testing operations, which will ensure that we are ready to fly the Artemis missions,” said Launch Director Charlie Blackwell-Thompson. “As we lay the foundation for exploring our solar system, the NASA test directors are on the front lines of making it happen.”

An NTD works from a console in the firing room during integrated or hazardous testing, guiding the team through any contingency or emergency operations. They lead critical testing on Launch Pad 39B and the mobile launcher, the 370-foot-tall, 11 million-pound steel structure that will launch the SLS rocket and Orion spacecraft on Artemis missions to the Moon and on to Mars. This includes sound suppression, fire suppression and cryogenic fluid flow tests, as well as testing the crew access arm and umbilicals — connections that will provide communications, coolant and fuel up until launch.

While the majority of work for the ground and flight systems is pre-liftoff, the job certainly doesn’t end there.

Senior NASA Test Director Jeff Spaulding
Senior NASA Test Director Jeff Spaulding has nearly three decades of experience in the Test, Launch and Recovery Office. Photo credit: NASA/Cory Huston

“It culminates in a two-day launch countdown in which all of the groups, teams and assets are required to function together in an almost flawless performance to get us to launch,” said Senior NASA Test Director Jeff Spaulding.

Spaulding has nearly three decades of experience in the Test, Launch and Recovery Office. For Artemis I, he is leading the launch control team and support teams during the launch countdown for Blackwell-Thompson, who will oversee the countdown and liftoff of SLS.

Just over three miles from the launch pad, on launch day, Spaulding will be in the firing room running the final portion of cryogenic loading through launch. During this time, supercool propellants — called cryogenics — are loaded into the vehicle’s tanks. He will perform the same tasks for the wet dress rehearsal, which is a full practice countdown about two months before launch that includes fueling the tanks and replicating everything done for launch prior to main engine start.

At the end of the mission, part of the team will lead the recovery efforts aboard a Navy vessel after Orion splashdown. The NASA recovery director and supporting NTDs are responsible for planning and carrying out all operations to recover the Orion capsule onto a U.S. Navy ship. This includes working closely with the Department of Defense to ensure that teams coordinate recovery plans, meet requirements, and follow timelines and procedures to bring our heroes and spacecraft home quickly and safely.

“We are supported by numerous teams at Kennedy and elsewhere around the country that are helping us with our historic first flight as we blaze a path toward landing astronauts on the Moon in 2024,” Spaulding said.

Team Practices Booster Stacking for Artemis Missions

In High Bay 4 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane moves Space Launch System (SLS) solid rocket booster pathfinder segments to stack them atop other pathfinder segments during a training exercise on Jan. 8, 2020.
In High Bay 4 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane moves Space Launch System (SLS) solid rocket booster pathfinder segments to stack them atop other pathfinder segments during a training exercise on Jan. 8, 2020. Photo credit: NASA/Glenn Benson

NASA’s Exploration Ground Systems team, including engineers, technicians and crane operators with contractor Jacobs, are practicing lifting and stacking operations with pathfinder segments of Northrup Grumman’s solid rocket boosters, which will provide extra thrust for NASA’s Space Launch System rocket. Practice took place in High Bay 4 of the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida.

”The pathfinder training has gone extremely well,” according to Michael McClure, Jacobs’ lead engineer for the Handling, Mechanical and Structures Engineering Group. “This is part of a series of practice exercises, which are providing great experience, especially for our new technicians, engineers, quality control personnel and crane operators.”

Stacking rehearsals help prepare the team for actual processing of launch hardware for Artemis missions. These specific pathfinder segments are inert, full-scale replicas of the actual solid rocket boosters, with the same weight (300,000 pounds) and center of gravity.

During launch hardware processing, the booster segments will be shipped by train to Kennedy from the Northrup Grumman facility in Utah. They will arrive at a processing facility to be configured for final processing, then move to the VAB, where the launch processing team will stack them vertically on the mobile launcher. After the boosters are stacked, the SLS Core Stage will be lowered onto the mobile launcher and will be mated to the boosters.

At launch, the five-segment, 17-story-tall twin boosters will provide 3.6 million pounds of thrust each at liftoff to help launch the SLS carrying Orion on Artemis I, its first uncrewed mission beyond the Moon.

Watch a time lapse video of booster segment training at https://go.nasa.gov/2ts6u3w.