NASA’s Psyche Mission Launch Update

NASA’s Psyche spacecraft is nearing the final stages of preparations for launch, and the mission team is working to confirm that all hardware and software systems are operating correctly. An issue is preventing confirmation that the software controlling the spacecraft is functioning as planned. The team is working to identify and correct the issue. To allow more time for this work, the launch period is being updated to no earlier than Sept. 20, 2022, pending range availability.

NASA’s Psyche Spacecraft Arrives at Kennedy

NASA's Psyche spacecraft arrives at Kennedy Space Center's Launch and Landing Facility in Florida.
Preparations are underway to offload NASA’s Psyche spacecraft from the C-17 aircraft it arrived aboard at Kennedy Space Center’s Launch and Landing Facility in Florida on April 29, 2022. Photo credit: NASA/Kim Shiflett

The Psyche spacecraft completed its journey from NASA’s Jet Propulsion Laboratory (JPL) in Southern California to NASA’s Kennedy Space Center in Florida. First, it traveled to March Air Reserve Base, about 55 miles southeast of JPL, before flying cross-country aboard a C-17 aircraft to the Launch and Landing Facility (formerly the Shuttle Landing Facility) where crews offloaded the spacecraft. Over the next three months, the spacecraft will undergo additional preparations before launching aboard a SpaceX Falcon Heavy rocket on Aug. 1.

The Psyche spacecraft will use solar-electric propulsion to travel approximately 1.5 billion miles (2.4 billion kilometers) to rendezvous with its namesake asteroid in 2026. This will make it the first spacecraft to use Hall-effect thrusters beyond the orbit of the Moon. This thruster technology traps electrons in a magnetic field and uses them to ionize onboard propellant, expending much less propellant than equivalent chemical rockets. Psyche also carries three scientific instruments: an imager, magnetometer, and a gamma ray and neutron spectrometer.

The unique, metal-rich Psyche asteroid may be part of the core of a planetesimal, a building block of rocky planets in our solar system. Learning more about the asteroid could tell us more about how our own planet formed and help answer fundamental questions about Earth’s own metal core and the formation of our solar system.

The launch of Psyche will include two secondary payloads, NASA’s Deep Space Optical Communications (DSOC) technical demonstration, which is attached to the spacecraft as a separate experiment and the Janus spacecraft. DSOC will perform the agency’s first demonstration of optical communications beyond the Earth-Moon system, and will use lasers to send data at a higher rate than typical spacecraft radio communications. Janus is two small spacecraft that will study two different binary asteroids (two asteroids that orbit each other) to understand the formation and evolution of these objects.

The Psyche mission is led by Arizona State University. JPL, which is managed for NASA by Caltech in Pasadena, California, is responsible for mission’s overall management, system engineering, integration and testing, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis. NASA’s Launch Services Program (LSP), based at Kennedy, is managing the launch. Psyche will be the 14th mission in the agency’s Discovery program and LSP’s 100th primary mission. Numerous international, university, and commercial partners are part of the Psyche team.

For more information check out the mission website.

Weather Holds at 30% Favorable, Prelaunch News Conference Set for Noon Today

Falcon 9 roll out for CRS-24
SpaceX’s Falcon 9 rocket with Dragon spacecraft rolls out to Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Dec. 19, 2021, in preparation for launch. The agency’s 24th commercial resupply services mission, targeted for liftoff on Dec. 21, 2021 at 5:06 a.m. EST, will deliver new science investigations, supplies, and equipment to the crew on board the International Space Station. Photo credit: SpaceX

The weather forecast remains unchanged for the planned Tuesday, Dec. 21, launch of SpaceX’s 24th commercial resupply services mission to the International Space Station for NASA.

Weather officials with Cape Canaveral Space Force Station’s 45th Weather Squadron predict a 30% chance of favorable weather conditions for Tuesday’s targeted liftoff of a SpaceX Falcon 9 rocket and the company’s Dragon spacecraft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

Less than favorable conditions are expected for the primary launch window early Tuesday morning, with the main concerns associated with this weather being the cumulus cloud rule, thick cloud layer rule, and surface electric field rule.

NASA commercial cargo provider SpaceX is targeting tomorrow at 5:06 a.m. EST, to launch its resupply services mission to the space station. The backup date for launch is Wednesday, Dec. 22, at 4:43 a.m. EST.

At noon today, NASA TV will broadcast a prelaunch news conference from the agency’s Kennedy Space Center in Florida for SpaceX’s 24th commercial resupply services mission. The event will feature representatives from NASA’s International Space Station Program, SpaceX, and the U.S. Space Force Space Launch Delta 45.

Participants include:

  • Joel Montalbano, manager for the International Space Station Program
  • Bob Dempsey, Acting Deputy Chief Scientist, International Space Station Program
  • Sarah Walker, director, Dragon mission management at SpaceX
  • Arlena Moses, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron

Live launch coverage will air on NASA Television, the NASA app and the agency’s website, with prelaunch events starting Tuesday at 4:45 a.m. EST. Join us on the blog for live updates, or follow along on NASA TV or the agency’s website for the live launch broadcast.

Stay connected with the mission on social media and let people know you’re following the mission on Twitter, Facebook, and Instagram by using the hashtags #Dragon and #NASASocial. Follow and tag these accounts:

Twitter: @NASA, @NASAKennedy, @NASASocial, @Space_Station, @ISS_Research, @ISS National Lab, @SpaceX
Facebook: NASA, NASAKennedy, ISS, ISS National Lab
Instagram: @NASA, @NASAKennedy, @ISS@ISSNationalLab, @SpaceX

SpaceX Falcon 9 Rolled to Launch Pad, Weather 30% Favorable for CRS-24 Launch

SpaceX’s Falcon 9 rocket with Dragon spacecraft rolls out to Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Dec. 19, 2021, in preparation for launch. The agency’s 24th commercial resupply services mission, targeted for liftoff on Dec. 21, 2021 at 5:06 a.m. EST, will deliver new science investigations, supplies, and equipment to the crew on board the International Space Station.
SpaceX’s Falcon 9 rocket with Dragon spacecraft rolls out to Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Dec. 19, 2021, in preparation for launch. The company’s 24th commercial resupply services mission for NASA, targeted for liftoff on Dec. 21, 2021 at 5:06 a.m. EST, will deliver new science investigations, supplies, and equipment to the crew on board the International Space Station. Photo credit: SpaceX

NASA commercial cargo launch provider SpaceX’s Falcon 9 rocket – with the Dragon atop – was rolled out to the launch pad Sunday morning, Dec. 19, before being raised to a vertical position in preparation for Tuesday’s launch of SpaceX’s 24th commercial resupply services mission to the International Space Station. Liftoff of the Falcon 9 is scheduled for 5:06 a.m. EST.

Weather officials with Cape Canaveral Space Force Station’s 45th Weather Squadron now predict a 30% chance of favorable weather conditions for Tuesday’s launch, with the cumulous cloud, thick cloud layer, and surface electric field rules remaining the primary weather concerns.

Dragon will deliver a variety of NASA science investigations, including a protein crystal growth study that could improve how cancer treatment drugs are delivered to patients, a handheld bioprinter that could one day be used to print tissue directly onto wounds for faster healing, an investigation from the makers of Tide that examines detergent efficacy in microgravity, and investigations from the Student Payload Opportunity with Citizen Science (SPOCS) program.

About 12 minutes after launch, Dragon will separate from the Falcon 9 rocket’s second stage and begin a carefully choreographed series of thruster firings to reach the space station. Arrival to the station is planned for Wednesday, Dec. 22. Dragon will dock autonomously to the forward-facing port of the station’s Harmony module, with NASA astronauts Raja Chari and Thomas Marshburn monitoring operations from the station.

The spacecraft is expected to spend about a month attached to the orbiting outpost before it returns to Earth with research and return cargo, splashing down off the coast of Florida.

Tune in to NASA TV or the agency’s website for live coverage of mission activities, beginning Monday, Dec. 20, at noon with the prelaunch news conference. Live launch day coverage starts Tuesday at 4:45 a.m. EST.

Weather 40% Favorable for Tuesday’s SpaceX Cargo Resupply Launch

Weather officials with Cape Canaveral Space Force Station’s 45th Weather Squadron predict a 40% chance of favorable weather conditions for Tuesday’s launch, with the cumulous cloud, thick cloud layer, and surface electric field rules being the primary weather concerns.

SpaceX is targeting Dec. 21, at 5:06 a.m. EST, to launch its 24th commercial resupply services mission to the International Space Station for NASA. Liftoff will be from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. SpaceX’s Dragon spacecraft will deliver new science investigations, supplies, and equipment for the international crew.

Some of the NASA science investigations launching as part of Dragon’s 6,500 pounds of cargo include a protein crystal growth study that could improve how cancer treatment drugs are delivered to patients and a handheld bioprinter that could one day be used to print tissue directly onto wounds for faster healing. There are also experiments from students at several universities as part of the Student Payload Opportunity with Citizen Science (SPOCS) program and an investigation from the makers of Tide that examines detergent efficacy in microgravity.

Live coverage will air on NASA Television, the NASA app and the agency’s website, with prelaunch events starting Tuesday at 4:45 a.m. You can also join us here on the blog for live updates.

Stay connected with the mission on social media and let people know you’re following the mission on Twitter, Facebook, and Instagram by using the hashtags #Dragon and #NASASocial. Follow and tag these accounts:

Twitter: @NASA, @NASAKennedy, @NASASocial, @Space_Station, @ISS_Research, @ISS National Lab, @SpaceX
Facebook: NASA, NASAKennedy, ISS, ISS National Lab
Instagram: @NASA, @NASAKennedy, @ISS@ISSNationalLab, @SpaceX

Launch Readiness Review Complete Ahead of 24th SpaceX Resupply Mission

CRS-23 Cargo Dragon
A SpaceX Falcon 9 rocket, topped with the Dragon spacecraft, is seen inside the company’s hangar at NASA’s Kennedy Space Center in Florida on Aug. 24, 2021, prior to being rolled out to the launch pad in preparation for the 23rd commercial resupply services launch. The mission delivered science investigations, supplies, and equipment to the crew aboard the International Space Station. Photo credit: SpaceX

Joint teams from NASA and SpaceX have completed a launch readiness review ahead of the company’s 24th commercial resupply services mission to the International Space Station for the agency. Liftoff is targeted for Tuesday, Dec. 21, at 5:06 a.m. EST from Launch Complex 39A at the agency’s Kennedy Space Center in Florida, and the live launch broadcast will begin at 4:45 a.m.

SpaceX’s Falcon 9 rocket and Dragon spacecraft have been mated inside the company’s hangar at Launch Complex 39A. Rollout to the launch pad is scheduled for Sunday, Dec. 19, when teams from SpaceX will then raise the Falcon 9 – with Dragon atop – into vertical position in preparation for launch.

Tune in on NASA Television, the NASA app, or the agency’s website at noon Monday, Dec. 20, for the prelaunch news conference from Kennedy’s Press Site with the following participants:

  • Joel Montalbano, manager, NASA’s International Space Station Program
  • Bob Dempsey, acting deputy chief scientist, NASA’s International Space Station Program
  • Sarah Walker, director, Dragon Mission Management, SpaceX
  • Arlena Moses, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron

SpaceX’s Dragon spacecraft will deliver 6,500 pounds of new science investigations, supplies, and equipment for the international crew. Research includes a protein crystal growth study that could improve how cancer treatment drugs are delivered to patients and a handheld bioprinter that could one day be used to print tissue directly onto wounds for faster healing. Also aboard are experiments from students at several universities as part of the Student Payload Opportunity with Citizen Science (SPOCS) program as well as an investigation from the makers of Tide that examines detergent efficacy in microgravity.

Kennedy Scientist Journeys to End of Earth for Plant Research: Astrobotanist Log 1

Neumayer III Station in Antarctica.
Neumayer III Station in Antarctica. Photo credit: DLR/NASA/Jess Bunchek

After training for months in Germany, Jess Bunchek, a plant scientist with NASA’s Kennedy Space Center, departed Dec. 20, 2020, for the German Neumayer III Station in Antarctica, operated by the Alfred Wegner Institute (AWI). Working at the EDEN ISS greenhouse managed by the German Aerospace Center (DLR), Bunchek will research growing food crops in a remote, harsh setting, similar to what astronauts experience in space. Here is her account of the journey to EDEN ISS.

The 2021 overwintering team in front of Polarstern upon arrival in Antarctica.
The 2021 overwintering team in front of Polarstern upon arrival in Antarctica. Back row L-R: mechanical engineer Florian Koch, chef Tanguy Doron, station leader and surgeon Peter Jonczyk, meteorologist Paul Ockenfuss, electrical engineer Markus Baden, geophysicist Lorenz Marten. Front row L-R: atmospheric chemist Linda Ort, IT and radio specialist Theresa Thoma, geophysicist Timo Dornhoefer, agronomist/astrobotanist Jess Bunchek. Photo credit: AWI/Tim Heitland

In a typical year, you can reach the Neumayer III Station in Antarctica by air, but as we all know, the past year has been anything but typical. With countries restricting travelers and flights being cancelled, the institute that runs Neumayer came up with an alternative: go by ship. The icebreaker RV Polarstern, German for “polar star,” already travels annually from Germany to Neumayer to resupply the station, so adding a few passengers to this year’s transit was a logical and COVID-safe solution for AWI.

Icebreaker RV Polarstern that transported the team from Germany to Antarctica on a non-stop trip.
Icebreaker RV Polarstern that transported the team from Germany to Antarctica on a non-stop trip. Credit: DLR/NASA/Jess Bunchek

Our month-long voyage started with a storm in the English Channel and Bay of Biscay. The ship cut through 16-foot (5-meter) waves in spectacular fashion, although inside the ship, many of us rookies looked a bit, well, green from seasickness. Fortunately, we found ourselves in calmer seas with beautiful weather by the time we passed the Grand Canary Islands, which gave us the chance to fully appreciate the purpose and privilege of our voyage. That we are still able to overwinter while the world has come to a halt due to the pandemic has not been lost on us in the slightest.

The temperature quickly dropped as we approached the Antarctic Circle at 60 degrees south latitude, and soon we found ourselves in polar day where the Sun does not set, and sea ice is common. The latter was no problem for Polarstern, which is designed to navigate such an environment. In the Antarctic, orcas are the greatest predatorial threat to seals and penguins, which prefer to stay on the ice as we pass by than risk diving into the water. On multiple occasions, the large ship had to navigate around sunbathing seals.

We awoke early one morning parked next to the Ekstrøm Ice Shelf. Welcome to Antarctica! The next step was to unload Polarstern of passengers and cargo and move to Neumayer, still 12 miles (20 km) away. In the absence of buildings, trees, or mountains, our landmarks were now the colossal icebergs in nearby Atka Bay.

Navigating polar regions goes beyond the design of an icebreaker ship. In thick sea ice, helicopters are crucial for surveying the surrounding area and determining the best route for Polarstern. They also can quickly run temperature-critical and fragile supplies – such as seeds for EDEN ISS – from the ship to Neumayer while checking the long-term condition of the shelf ice.

However, all other transit is done on the ice. Snowmobiles are the ideal option for shorter, lighter trips, while tracked plows are better for heavy-duty jobs such as hauling, plowing, or longer travel.

Without further ado, I present AWI’s 41st overwintering team. Our 10-person crew consists of mechanic and electrical technician support, a cook, an IT and radio specialist, a surgeon, and scientists in the areas of geophysics, atmospheric chemistry, meteorology, and me, an agronomist and astrobotanist. Although my area of research focuses on supplying fresh crops to the crew while testing capabilities for space crop production, I would be remiss to not mention the role that marine and polar science play in climate change research. Traveling the length of the Atlantic Ocean reinforced a seemingly obvious but noteworthy theme: Our oceans and poles are humbling and marvelous. From the dark hues of icy, choppy waters to the velvet-smooth waves and warm, vibrant blue-greens near the Equator, to the frozen shelf ice that the 10 of us will call home for the next year, our Earth sure is a beautiful planet.

Now, we’re preparing the EDEN ISS greenhouse for the upcoming season, and I will post again soon.

Click here to view the story and additional photos on Instagram.

“What’s on Board” Briefing for SpaceX CRS-20 Mission

Airbus workers unpack the Bartolomeo platform in the Space Station Processing Facility high bay at NASA’s Kennedy Space Center in Florida on Jan. 30, 2020.
Airbus workers unpack the Bartolomeo platform in the Space Station Processing Facility high bay at NASA’s Kennedy Space Center in Florida on Jan. 30, 2020. Bartolomeo was manufactured by Airbus Defence and Space. The platform will be delivered to the International Space Station aboard SpaceX’s 20th Commercial Resupply Services (CRS-20) mission for the agency. The platform will attach to the exterior of the space station’s European Columbus Module. Photo credit: NASA/Ben Smegelsky

A briefing about the science payloads for delivery on the SpaceX CRS-20 mission to the International Space Station is set for today at 3 p.m. Tune in to NASA Television. Participants include:

  • Jennifer Buchli, deputy chief scientist for NASA’s International Space Station Program Science Office, who will share an overview of the research being conducted aboard the space station and how it benefits exploration and humanity.
  • Michael Roberts, interim chief scientist for the International Space Station U.S. National Laboratory, who will discuss the lab’s work in advancing science in space, and in developing partnerships that drive industrialization through microgravity research.
  • Bill Corely, director of business development for Airbus Defence and Space, and Bartolomeo Project Manager Andreas Schutte, who will discuss Bartolomeo, a new commercial research platform from ESA (European Space Agency), set to be installed on the exterior of the orbiting laboratory.
  • Chunhui Xu, associate professor of Emory University School of Medicine, and principle investigator for the Generation of Cardiomyocytes from Induced Pluripotent Stem Cells (MVP Cell-03) experiment, who will discuss the study on the generation of specialized heart muscle cells for use in research and clinical applications.
  • Paul Patton, senior manager, front end innovation and regulatory for Delta Faucet, and Garry Marty, principal product engineer for Delta Faucet, who will discuss the Droplet Formation Study, which evaluates water droplet formation and water flow of Delta Faucet’s H2Okinetic showerhead technology. This research in microgravity could help improve technology, creating better performance and improved user experience while conserving water and energy.
  • Aaron Beeler, professor of medicinal chemistry at Boston University, and principal investigator, and co-investigator Matthew Mailloux of Flow Chemistry Platform for Synthetic Reactions on ISS, which will study the effects of microgravity on chemical reactions, as a first step toward on-demand chemical synthesis on the space station.