Mars 2020 Rover’s Heat Shield, Back Shell Arrive at Florida Spaceport

Mars 2020 heat shield and back shell
The heat shield and back shell for the Mars 2020 rover are unboxed inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on Dec. 13, 2019. Photo credit: NASA/Ben Smegelsky

Two vital pieces of equipment for the Mars 2020 rover were flown from Lockheed Martin Space in Denver, Colorado and recently delivered to the agency’s Kennedy Space Center.

The rover’s heat shield and back shell arrived at Kennedy’s Launch and Landing Facility (formerly the Shuttle Landing Facility) on Dec. 11, 2019, and were then transported to the Florida spaceport’s Payload Hazardous Servicing Facility. Built by Lockheed Martin Space, these two essential parts of the spacecraft will protect the rover during its passage to Mars. The Mars 2020 rover is being manufactured at NASA’s Jet Propulsion Laboratory (JPL) in California and, once complete, will be delivered to Kennedy in mid-February, 2020.

Mars 2020 rover heat shield and back shell unboxing
The heat shield and back shell will protect the Mars 2020 rover during its passage to Mars. Photo credit: NASA/Ben Smegelsky

As the spacecraft descends through the Martian atmosphere, the heat shield will encounter extreme amounts of friction, creating temperatures as high as about 3,200 degrees Fahrenheit. The back shell contains several elements critical to landing the rover, including the parachute and antennas for communication. Some of these key components will be integrated in the months to come by the NASA-JPL team at Kennedy.

The mission is scheduled to launch in the summer of 2020 from Cape Canaveral Air Force Station aboard a United Launch Alliance Atlas V 541 rocket, procured by NASA’s Launch Services Program. It will land on the Red Planet on Feb. 18, 2021.

About the size of a car with dimensions similar to the Curiosity rover, the Mars 2020 rover will carry seven different scientific instruments. Developed under NASA’s Mars Exploration Program, the mission aims to search for signs of past microbial life, characterize the planet’s climate and geology, collect samples for future return to Earth and pave the way for human exploration of Mars.

Visit the mission website for more information.

Kennedy Space Center Welcomes ‘Shooting Star’ Cargo Module

A testing mockup of Sierra Nevada Corporation's Shooting Star cargo module
A look at a testing mockup of Sierra Nevada Corporation’s Shooting Star cargo module in the Space Station Processing Facility high bay at Kennedy Space Center on Nov. 19, 2019. Shooting Star will attach to the back of the company’s Dream Chaser spacecraft. The cargo module will deliver more than 12,000 pounds of supplies and other cargo to the International Space Station for NASA as part of the Commercial Resupply Services-2 contract. Photo credit: NASA/Frank Michaux

A “Shooting Star” was unveiled Tuesday, Nov. 19, at Kennedy Space Center.

During a media event held in the Florida spaceport’s Space Station Processing Facility high bay, former NASA astronaut and current Senior Vice President of Strategy for Sierra Nevada Corporation (SNC) Space Systems Steve Lindsey revealed the name of the cargo module that will attach to the back of the company’s Dream Chaser spacecraft: Shooting Star.

“It’s an exciting day for us,” said Lindsey, a veteran of five NASA shuttle missions.

Sierra Nevada's media da;y for the Shooting Star cargo module in the Space Station Processing Faciility
Steve Lindsey, senior vice president of strategy for Sierra Nevada Corporation Space Systems and a former NASA astronaut, talks about Shooting Star’s capabilities. Photo credit: NASA/Frank Michaux

Shooting Star is a 15-foot-long cargo module that will attach to the back of the 30-foot-long Dream Chaser. It will be used to deliver more than 12,000 pounds of supplies and other cargo for NASA to the International Space Station as part of the Commercial Resupply Services-2 (CRS-2) contract. Its first flight is scheduled to launch from Kennedy in fall 2021.

“Sierra Nevada Corporation is excited to be expanding our footprint here at Kennedy Space Center,” said Kimberly Schwandt, senior communications manager for SNC Space Systems.

Dream Chaser will fly back to Earth and land on the runway at Kennedy’s Launch and Landing Facility, formerly the Shuttle Landing Facility. Shooting Star will have a different fate. It will carry unwanted cargo from the space station, disposing of it while burning up upon re-entry into Earth’s atmosphere. The process of “burning up” is where the Shooting Star name came from, Lindsey explained.

Steve Lindsey in front of Sierra Nevada Corporation's Shooting Star cargo module
Steve Lindsey poses in front of the Shooting Star cargo module inside Kennedy Space Center’s Space Station Processing Facility. Photo credit: NASA/Frank Michaux

“The cargo module is really interesting because it’s kind of the unsung hero of the whole Dream Chaser cargo system design,” Lindsey said, while standing in front of a Shooting Star testing mockup. “It has a very unique shape — notice how it angles in as you go higher. It’s shaped to handle external and internal payloads.”

Payload capability includes pressurized and unpressurized cargo. Though it was designed specifically for cargo resupply services to the space station, Shooting Star can have many other applications, Lindsey said, including carrying crew, operating as a free-flying satellite and going from low-Earth to lunar orbit.

“It’s a pretty versatile system,” Lindsey said, “and the more we worked on it, the more we realized there are multiple applications for it.”

The Shooting Star mockup was recently delivered to Kennedy from SNC’s facility in Colorado. It will remain at the Florida spaceport, Lindsey said, for testing, processing and training of flight controllers.

NASA selected Dream Chaser for the CRS-2 contract, which involves launching six cargo missions to the space station by 2024.