NASA to Launch Small Satellites on Next SpaceX Cargo Mission

Middle schoolers are sending their science fair project to space, one of five CubeSats on a ride-share on a Commercial Resupply Services, CRS-25. The CapSat-1 team are three 7th-grade students from the Weiss School in Palm Beach Gardens, Florida.
Middle schoolers are sending their science fair project to space, one of five CubeSats on a ride-share on the 25th Commercial Resupply Services, CRS-25. The CapSat-1 team are three 7th-grade students from the Weiss School in Palm Beach Gardens, Florida. Photo credit: Weiss School

NASA’s Launch Services Program is preparing to send five CubeSats to the International Space Station as part of the ELaNa 45 (Educational Launch of Nanosatellites) mission aboard SpaceX’s 25th Commercial Resupply Services (CRS-25) mission for NASA. Liftoff is scheduled for June 7 from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.

The small satellites were selected through NASA’s CubeSat Launch Initiative, which provides low-cost access to space for U.S. educational institutions, NASA centers, and others to develop and demonstrate novel technologies in space and to inspire and grow the next generation of scientists, engineers, and technologists.

The CubeSats were developed by the Massachusetts Institute of Technology; The Weiss School in Palm Beach Gardens, Florida; NASA’s Ames Research Center in Silicon Valley, California; Embry-Riddle Aeronautical University in Daytona Beach, Florida; and the University of South Alabama in Mobile. The CubeSats will be deployed from the space station.

NASA has selected over 200 CubeSat missions from more than 100 unique organizations representing 42 states, the District of Columbia, and Puerto Rico through the CubeSat Launch Initiative since 2010. To date, 134 CubeSat missions have launched into space through ELaNa rideshare opportunities.

NASA’s Psyche Spacecraft Arrives at Kennedy

NASA's Psyche spacecraft arrives at Kennedy Space Center's Launch and Landing Facility in Florida.
Preparations are underway to offload NASA’s Psyche spacecraft from the C-17 aircraft it arrived aboard at Kennedy Space Center’s Launch and Landing Facility in Florida on April 29, 2022. Photo credit: NASA/Kim Shiflett

The Psyche spacecraft completed its journey from NASA’s Jet Propulsion Laboratory (JPL) in Southern California to NASA’s Kennedy Space Center in Florida. First, it traveled to March Air Reserve Base, about 55 miles southeast of JPL, before flying cross-country aboard a C-17 aircraft to the Launch and Landing Facility (formerly the Shuttle Landing Facility) where crews offloaded the spacecraft. Over the next three months, the spacecraft will undergo additional preparations before launching aboard a SpaceX Falcon Heavy rocket on Aug. 1.

The Psyche spacecraft will use solar-electric propulsion to travel approximately 1.5 billion miles (2.4 billion kilometers) to rendezvous with its namesake asteroid in 2026. This will make it the first spacecraft to use Hall-effect thrusters beyond the orbit of the Moon. This thruster technology traps electrons in a magnetic field and uses them to ionize onboard propellant, expending much less propellant than equivalent chemical rockets. Psyche also carries three scientific instruments: an imager, magnetometer, and a gamma ray and neutron spectrometer.

The unique, metal-rich Psyche asteroid may be part of the core of a planetesimal, a building block of rocky planets in our solar system. Learning more about the asteroid could tell us more about how our own planet formed and help answer fundamental questions about Earth’s own metal core and the formation of our solar system.

The launch of Psyche will include two secondary payloads, NASA’s Deep Space Optical Communications (DSOC) technical demonstration, which is attached to the spacecraft as a separate experiment and the Janus spacecraft. DSOC will perform the agency’s first demonstration of optical communications beyond the Earth-Moon system, and will use lasers to send data at a higher rate than typical spacecraft radio communications. Janus is two small spacecraft that will study two different binary asteroids (two asteroids that orbit each other) to understand the formation and evolution of these objects.

The Psyche mission is led by Arizona State University. JPL, which is managed for NASA by Caltech in Pasadena, California, is responsible for mission’s overall management, system engineering, integration and testing, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis. NASA’s Launch Services Program (LSP), based at Kennedy, is managing the launch. Psyche will be the 14th mission in the agency’s Discovery program and LSP’s 100th primary mission. Numerous international, university, and commercial partners are part of the Psyche team.

For more information check out the mission website.

NASA’s Lucy Spacecraft Readies for Launch at Kennedy

The shipping container holding NASA's Lucy spacecraft is unloaded from an Air Force C-17 cargo plane on the runway of the Launch and Landing Facility at Kennedy Space Center in Florida on July 30, 2021.
The shipping container holding NASA’s Lucy spacecraft is unloaded from an Air Force C-17 cargo plane on the runway of the Launch and Landing Facility at Kennedy Space Center in Florida on July 30, 2021. Photo credit: NASA/Kim Shiflett

NASA’s Lucy spacecraft is now in Florida – its final Earth-bound destination – before embarking on a mission to study the Jupiter Trojan asteroids. A United States Air Force C-17 cargo plane from Charleston Air Force Base in South Carolina, flew to Buckley Space Force Base in Aurora, Colorado, to pick up the spacecraft. The aircraft, with Lucy safely inside, then touched down at the Launch and Landing Facility runway at NASA’s Kennedy Space Center on July 30, 2021. From there, the spacecraft was transported to an Astrotech Space Operations processing facility in nearby Titusville to undergo final preparations before liftoff.

Named after a fossilized human ancestor whose skeleton provided discoverers insight into humanity’s evolution, the Lucy mission will do much of the same, providing scientists and researchers a look into the origins of our solar system.

The Trojan asteroids orbit the Sun in two groups: one group lies ahead of Jupiter while the other trails behind. Stabilized by both the Sun and Jupiter, those swarms of asteroids are thought to be remnants of the initial material that formed the planets within the solar system. Throughout the duration of the mission, Lucy will visit eight different asteroids over the span of 12 years, unlocking new information about the primitive bodies that created our early solar system.

Lucy is scheduled to launch on a United Launch Alliance Atlas V rocket from Cape Canaveral Space Force Station on Oct. 16. The launch is being managed by the NASA’s Launch Services Program based at Kennedy, America’s multi-user spaceport. The mission will be the first to study the Trojans.