Lift Underway to Top Mega-Moon Rocket with Orion Spacecraft

Orion lifted atop SLS rocket in the VAB
Photo Credit: Chad Siwik

Final stacking operations for NASA’s mega-Moon rocket are underway inside the Vehicle Assembly Building at NASA’s Kennedy Space Center as the Orion spacecraft is lifted onto the Space Launch System (SLS) rocket for the Artemis I mission. Engineers and technicians with Exploration Ground Systems (EGS) and Jacobs attached the spacecraft to one of the five overhead cranes inside the building and began lifting it a little after midnight EDT.

Next, teams will slowly lower it onto the fully stacked SLS rocket and connect it to the Orion Stage Adapter. This will require the EGS team to align the spacecraft perfectly with the adapter before gently attaching the two together. This operation will take several hours to make sure Orion is securely in place.

NASA will provide an update once stacking for the Artemis I mission is complete.

Release and Retract Test Marks Artemis I Mission Milestone

A close-up view of the Artemis I Space Launch System rocket inside High Bay 3 of the Vehicle Assembly Building at Kennedy Space Center in Florida.
A close-up view of the Artemis I Space Launch System rocket inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Sept. 20, 2021. All 10 levels of work platforms have been retracted from around the rocket as part of the umbilical release and retract test. During the test, several umbilical arms on the mobile launcher were extended to connect to the SLS rocket and then swung away from the launch vehicle, just as they will on launch day. Artemis I will be the first integrated test of the SLS and Orion spacecraft. In later missions, NASA will land the first woman and the first person of color on the surface of the Moon, paving the way for a long-term lunar presence and serving as a steppingstone on the way to Mars. Photo credit: NASA/Frank Michaux

Engineers with Exploration Ground Systems and contractor Jacobs successfully completed the Umbilical Release and Retract Test on Sept. 19 inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in preparation for the Artemis I mission.

The umbilicals will provide power, communications, coolant, and fuel to the rocket and the Orion spacecraft while at the launch pad until they disconnect and retract at ignition and liftoff.

“Previous testing at the Launch Equipment Test Facility and in the VAB refined our designs and processes and validated the subsystems individually, and for Artemis I, we wanted to prove our new systems would work together to support launch,” said Jerry Daun, Jacobs Arms and Umbilical Systems Operations Manager.

During the test, several umbilical arms extended to connect the Space Launch System (SLS) rocket and the mobile launcher. They swung away from the rocket, just as they will on launch day.

“This test is important because the next time these ground umbilical systems are used will be the day of the Artemis I launch,” said Scott Cieslak, umbilical operations and testing technical lead.

Teams will continue conducting tests inside the VAB before transporting the Orion spacecraft to the assembly building and stacking it atop the SLS, completing assembly of the rocket for the Artemis I mission.

“It was a great team effort to build, and now test, these critical systems,” said Peter Chitko, arms and umbilicals integration manager. “This test marked an important milestone because each umbilical must release from its connection point at T-0 to ensure the rocket and spacecraft can lift off safely.”

Artemis I will be the first integrated test of the SLS and Orion spacecraft. In later Artemis missions, NASA will land the first woman and the first person of color on the surface of the Moon, paving the way for a long-term lunar presence and serving as a steppingstone on the way to Mars.

Backbone of NASA’s Moon Rocket Joins Boosters for Artemis I Mission

Space Launch System core stage
Teams with NASA’s Exploration Ground Systems and contractor Jacobs lower the Space Launch System (SLS) core stage – the largest part of the rocket – onto the mobile launcher, in between the twin solid rocket boosters, inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on June 12, 2021. Photo credit: NASA/Cory Huston

Leerlo en español aquí

The core stage of the Space Launch System (SLS) rocket for NASA’s Artemis I mission has been placed on the mobile launcher in between the twin solid rocket boosters inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. The boosters attach at the engine and intertank sections of the core stage. Serving as the backbone of the rocket, the core stage supports the weight of the payload, upper stage, and crew vehicle, as well as carrying the thrust of its four engines and two five-segment solid rocket boosters.

After the core stage arrived on April 27, engineers with Exploration Ground Systems and contractor Jacobs brought the core stage into the VAB for processing work and then lifted it into place with one of the five overhead cranes in the facility.

Once the core stage is stacked alongside the boosters, the launch vehicle stage adapter, which connects the core stage to the interim cryogenic propulsion stage (ICPS), will be stacked atop the core stage and quickly followed by the ICPS.

Artemis I will be an uncrewed test of the Orion spacecraft and SLS rocket as an integrated system ahead of crewed flights to the Moon. Under the Artemis program, NASA aims to land the first woman and first person of color on the Moon in 2024 and establish sustainable lunar exploration by the end of the decade.

Kennedy Announces Winner for 2020 Best of KSC Software Competition

Members of the development team that redesigned the SpecsIntact software at Kennedy Space Center.
The development team that redesigned the SpecsIntact software at NASA’s Kennedy Space Center in Florida is made up of NASA and contractor employees from across the center. In the front row, from left is Candy Thomas, Tammy Edelman, and Martha Muller. Middle row, from left is Carly Helton, Marcelo Dasilva, Eric Lockshine, Cheryl Fitz-Simon, and Maria Zamora. Back row, from left is Jim Whitehead, Pierre Gravelat, Stephan Whytsell. Members of the team not pictured are Dan Evans, Belle Graziano, Eric Hall, Lelia Hancock, Justin Junod, John Merrick, Jim Morrison, Julie Nicely, Phil Nicholson, Gerard Sczepura, Daniel Smith, and Jeanne Yow. Photo credit: NASA

NASA’s Kennedy Space Center, a premier multi-user spaceport, uses research and innovation to support the future of space exploration. Kennedy’s annual Best of KSC Software competition is an employee-driven contest that fosters creativity and enables new discoveries to improve the quality of life on Earth and the exploration of our solar system and beyond.

Close-up view of the flame trench and flame deflector and Launch Pad 39B.
A close-up view of the flame trench and flame deflector at Launch Pad 39B at NASA’s Kennedy Space Center in Florida on July 26, 2018. The launch pad has undergone upgrades and modifications to accommodate NASA’s Space Launch System and Orion spacecraft for Artemis I and other deep space missions. New heat-resistant bricks have been installed on the walls and a new flame deflector is in place. Photo Credit: NASA/Cory Huston

The 2020 winner of Best of KSC Software was SpecsIntact 5. The development team, made up of NASA employees and contractors from across the center, earned this distinction by redesigning the SpecsIntact software. This automated specification management system is used in construction projects worldwide. The upgraded system reduces the time and cost required to produce facility specifications with an easy and intuitive interface that assists with quality control.

The team at Kennedy Space Center manages the SpecsIntact system, which also is used by many federal and state agencies, including the U.S. military. At Kennedy, NASA used previous versions of the software for the design, construction, and upgrades of several facilities, including modification of the spaceport’s headquarters building and upgrades to the main flame deflector in the flame trench at Launch Pad 39B.

A view looking up at the 10 levels of work platforms in High Bay 3 inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The work platforms will surround and provide access for service and processing of NASA’s Space Launch System rocket and Orion spacecraft. Photo credit: NASA/Glenn Benson

The software was also instrumental to the renovation of High Bay 3 inside the Vehicle Assembly Building in preparation for NASA’s first integrated launch of the Space Launch System rocket and Orion spacecraft as part of the agency’s Artemis program.

The SpecsIntact system has evolved significantly since first conceived at NASA in 1965 to support applications across both the government and private sector. NASA’s Technology Transfer Program ensures that innovations developed for exploration and discovery are broadly available to the public, maximizing the benefit to the nation. The program enables U.S. industry efforts to find new applications for NASA technologies on Earth and for human space exploration, including deep space missions to the Moon and Mars.

NASA’s Space Launch System Receives Another Major Boost

SLS solid rocket boosters
The solid rocket boosters will power the first flight of NASA’s Space Launch System rocket on the Artemis I mission. Photo credit: NASA/Kim Shiflett

The third of five sets of solid rocket boosters for NASA’s Space Launch System (SLS) rocket were placed on the mobile launcher inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The middle segments, painted with the iconic “worm” logo, were lifted onto the launcher by Jacobs and Exploration Ground Systems engineers using the VAB’s 325-ton crane.

The twin boosters will power the first flight of the agency’s new deep space rocket on its first Artemis Program mission. Artemis I will be an uncrewed flight to test the SLS rocket and Orion spacecraft as an integrated system ahead of crewed flights.

NASA to ‘Rock and Roll’ on Crawlerway Ahead of Artemis I Mission

Crawlerway at Kennedy Space Center
Teams at NASA’s Kennedy Space Center in Florida are working to ensure the crawlerway is strong enough to withstand the weight and provide stability for the Artemis I mission. Photo credit: NASA/Ben Smegelsky

Before the most powerful rocket in existence can lift off for lunar missions, it must first make the 4.2-mile trek from the Vehicle Assembly Building (VAB) to the launch pad at NASA’s Kennedy Space Center in Florida.

For the Artemis I mission, the path from the VAB to Launch Complex 39B must be able to support the behemoth Crawler Transporter-2 — as well as the massive weight of the Space Launch System (SLS) rocket, the Orion capsule, and the mobile launcher. Teams at Kennedy are working to ensure the crawlerway is strong enough to withstand the weight and provide stability for the Artemis I mission and then some.

“Conditioning the crawlerway is important to prevent a phenomenon we call liquefaction, in which the crawler transporter, the mobile launcher, and the load on it causes the crawlerway to vibrate and shake the soil,” said Robert Schroeder, design manager of the crawlerway conditioning project and engineer at Kennedy. “Essentially, the soil itself will behave like a liquid instead of a solid, which could cause the crawler to tip to one side or the other.”

The crawlerway is currently required to support 25.5 million pounds for the Artemis I mission. However, as essential payloads will be added on future missions, the teams at Kennedy decided to test additional weight so they would be “ahead of the ballgame,” Schroeder said.

Work to prepare the crawlerway began Nov. 23. Over the next few months, technicians will lift several concrete blocks, each weighing over 40,000 pounds, onto the mobile launcher platform used for the space shuttle and Crawler Transporter-2. They will then drive the loaded transporter up and down the path between the VAB and launch pad, with each pass increasingly compacting the soil. By the time the project ends, the crawlerway will have supported more than 26 million pounds.

Artemis I will be the first in a series of increasingly complex missions to the Moon. Under the Artemis program, NASA aims to land the first woman and the next man on the Moon in 2024 and establish sustainable lunar exploration by the end of the decade.

Team Practices Booster Stacking for Artemis Missions

In High Bay 4 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane moves Space Launch System (SLS) solid rocket booster pathfinder segments to stack them atop other pathfinder segments during a training exercise on Jan. 8, 2020.
In High Bay 4 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane moves Space Launch System (SLS) solid rocket booster pathfinder segments to stack them atop other pathfinder segments during a training exercise on Jan. 8, 2020. Photo credit: NASA/Glenn Benson

NASA’s Exploration Ground Systems team, including engineers, technicians and crane operators with contractor Jacobs, are practicing lifting and stacking operations with pathfinder segments of Northrup Grumman’s solid rocket boosters, which will provide extra thrust for NASA’s Space Launch System rocket. Practice took place in High Bay 4 of the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida.

”The pathfinder training has gone extremely well,” according to Michael McClure, Jacobs’ lead engineer for the Handling, Mechanical and Structures Engineering Group. “This is part of a series of practice exercises, which are providing great experience, especially for our new technicians, engineers, quality control personnel and crane operators.”

Stacking rehearsals help prepare the team for actual processing of launch hardware for Artemis missions. These specific pathfinder segments are inert, full-scale replicas of the actual solid rocket boosters, with the same weight (300,000 pounds) and center of gravity.

During launch hardware processing, the booster segments will be shipped by train to Kennedy from the Northrup Grumman facility in Utah. They will arrive at a processing facility to be configured for final processing, then move to the VAB, where the launch processing team will stack them vertically on the mobile launcher. After the boosters are stacked, the SLS Core Stage will be lowered onto the mobile launcher and will be mated to the boosters.

At launch, the five-segment, 17-story-tall twin boosters will provide 3.6 million pounds of thrust each at liftoff to help launch the SLS carrying Orion on Artemis I, its first uncrewed mission beyond the Moon.

Watch a time lapse video of booster segment training at https://go.nasa.gov/2ts6u3w.