Mars 2020 Rover’s Heat Shield, Back Shell Arrive at Florida Spaceport

The heat shield and back shell for the Mars 2020 rover
The heat shield and back shell for the Mars 2020 rover are unboxed inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on Dec. 13, 2019. Photo credit: NASA/Ben Smegelsky

Two vital pieces of equipment for the Mars 2020 rover were flown from Lockheed Martin Space in Denver, Colorado, and recently delivered to the agency’s Kennedy Space Center.

The rover’s heat shield and back shell arrived at Kennedy’s Launch and Landing Facility (formerly the Shuttle Landing Facility) on Dec. 11, 2019, and were then transported to the Florida spaceport’s Payload Hazardous Servicing Facility. Built by Lockheed Martin Space, these two essential parts of the spacecraft will protect the rover during its passage to Mars. The Mars 2020 rover is being manufactured at NASA’s Jet Propulsion Laboratory (JPL) in California and, once complete, will be delivered to Kennedy in mid-February, 2020.

Unboxing of the Mars 2020 heat shield and back shell
The heat shield and back shell will protect the Mars 2020 rover during its passage to Mars. Photo credit: NASA/Ben Smegelsky

As the spacecraft descends through the Martian atmosphere, the heat shield will encounter extreme amounts of friction, creating temperatures as high as about 3,200 degrees Fahrenheit. The back shell contains several elements critical to landing the rover, including the parachute and antennas for communication. Some of these key components will be integrated in the months to come by the NASA-JPL team at Kennedy.

The mission is scheduled to launch in the summer of 2020 from Cape Canaveral Air Force Station aboard a United Launch Alliance Atlas V 541 rocket, procured by NASA’s Launch Services Program. It will land on the Red Planet on Feb. 18, 2021.

About the size of a car with dimensions similar to the Curiosity rover, the Mars 2020 rover will carry seven different scientific instruments. Developed under NASA’s Mars Exploration Program, the mission aims to search for signs of past microbial life, characterize the planet’s climate and geology, collect samples for future return to Earth and pave the way for human exploration of Mars.

Visit the mission website for more information.

Gearing Up for Mars 2020 Rover

The Spacecraft Assembly and Rotation Fixture (SCARF) that will be used to process the Mars 2020 rover is photographed inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on Nov. 22, 2019.
The Spacecraft Assembly and Rotation Fixture (SCARF) that will be used to process the Mars 2020 rover is photographed inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on Nov. 22, 2019. Attached to the SCARF is an access stand that will allow personnel to reach the spacecraft when it’s held above ground level. Photo credit: NASA/Kim Shiflett

Critical ground support equipment needed to prepare NASA’s Mars 2020 rover for its journey to the Red Planet has arrived at a payload processing facility at the Kennedy Space Center in Florida. The rover is being manufactured at the agency’s Jet Propulsion Laboratory in California and, once complete, will be sent to Kennedy for assembly, prelaunch processing and checkouts.

The spin table, one of the crucial hardware elements that will be utilized to process the Mars 2020 rover, is photographed inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on Nov. 22, 2019.
The spin table, one of the crucial hardware elements that will be utilized to process the Mars 2020 rover, is photographed inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on Nov. 22, 2019. Photo credit: NASA/Kim Shiflett

One vital element of hardware involved in spacecraft processing will be the Spacecraft Assembly and Rotation Fixture (SCARF) and its access stand, allowing teams to reach the spacecraft when it’s held above ground level. This fixture also is where all of the individual spacecraft elements will be mated together. Once assembly is finalized, the SCARF will rotate the spacecraft 180 degrees for encapsulation into the launch vehicle’s payload fairing, where it will remain for launch.

Developed under NASA’s Mars Exploration Program, the Mars 2020 rover is designed to better understand the geology of Mars and seek signs of ancient microbial life. The mission will collect and store a set of rock and soil samples that could be returned to Earth in the future. It also will test new technology to benefit future robotic and human exploration of Mars. About the size of a car and close to the same dimensions as the Curiosity rover, the Mars 2020 rover will carry seven different scientific instruments to conduct studies aimed at benefiting future Mars exploration efforts.

The rover is scheduled to launch in the summer of 2020 from Cape Canaveral Air Force Station aboard a United Launch Alliance Atlas V 541 rocket, procured by NASA’s Launch Services Program.