Testing Robotic Life-Detection Technologies at the Rio Tinto Analog Site

This month (June 2017), a joint collaborative team from NASA Ames and Spain’s Centro de Astrobiologia (CAB) have brought and successfully tested astrobiology and sampling technologies at the Rio Tinto analog site in southern Spain, bringing these closer to future life-search mission readiness. One of the current leading future concepts for searching for signs of past or current life on Mars is the “Icebreaker” mission concept, which would send a Phoenix or InSight-like lander to Mars with a drill, robot arm and instruments capable of detecting signs of life, similar in some respects and appearance to the system tested at Rio Tinto.

Under the NASA Science Mission Directorate’s Moon and Mars Analog Missions Activities (MMAMA) program, the Life-Detection Mars Analog Project (LMAP) brought together in Spain a prototype 2m planetary drill by Honeybee Robotics, a 2m robot arm from MDA Aerospace (with an Ames scoop), and the Signs of Life Detector (SOLID) immunoassay instrument from Spain’s CAB, all managed and run by Ames drilling automation and robotic control software. This robotic system was mounted on an aluminum full-size InSight lander mockup and operated autonomously at Rio Tinto during the week of June 5-9.  Rio Tinto, as an analog site, provides extremophiles living off the energy stored in a broad variety of target rocks underground, as we might find in places outside the Earth.

LMAP lander field testbed, showing its 2m drill, robot arm and the SOLID instrument, is tested at the Rio Tinto Mars-analog site on June 8.

Drilling a net 8m in 11 holes, the LMAP lander prototype autonomously acquired and provided pulverized sample material to the SOLID instrument, which subsequently detected several species of bacteria native to the Rio Tinto area’s unusually acidic (1.5-2.5 pH) soils. The robotic technologies demonstrated included fault detection and recoveries while drilling, precise placement and robotic delivery of small sample quantities (1-2 grams dispersed out of typically 50-100g), and operational real-time onboard planning and scheduling. “I was surprised at the smoothness and precision, it was really solid,” said Dr. Carol Stoker, the LMAP and Icebreaker chief scientist.

Scoop on LMAP robot arm delivers 2g of drilled sample into the Signs of Life Detector (SOLID) instrument on the deck.

The search for evidence of ancient climates, extinct life, and potential habitats for extant life on Mars, given the desiccated and irradiated conditions near the surface, will require drilling or some other form of subsurface access. By testing robotic drill and sampling systems together with prototype life-detection instruments to test the “ground truth” of organics and biomarkers found underground at an easily-accessible Mars analog site, the LMAP tests in Rio Tinto are an important first step.

Wrestling with field conditions…

Working on an otherwise-deserted Arctic island the size of the US state of West Virginia requires patience and complex logistics. Delays are commonplace as flights often operate only one or two times a week using small aircraft. Resolute has had weeks of bad weather… our HMP-14 team had flights cancelled twice and spent two unplanned days in Iqaluit.

Stream appear during heavy rains around Haughton-Mars Project base camp on Devon Island.  A flash flood caused the camp to be temporarily isolated from the crater itself (uncrossable by ATV).
Streams appear during heavy rains around the Haughton-Mars Project base camp on Devon Island. A flash flood caused the camp to be temporarily isolated from the crater itself (uncrossable by ATV).

Once in the field, the travel delays have left us with a shortened field season, only 8 days long. And even that has been affected by a cold and wet summer, even some flash flooding that temporarily left HMP base camp isolated from the crater trails, until waters subsided.

Drill and robotic test camp inside Haughton Crater. "Drill Hill"'s impact breccia and permafrost make it an excellent textural analog for Mars drilling tests.
Drill and robotic test camp inside Haughton Crater. “Drill Hill” impact breccia and permafrost make it an excellent textural analog for Mars drilling tests.

Despite the delays, our team has persevered and set up the work camp at Drill Hill inside the crater, to test our prototype Mars drill and sample transfer arm. We have gotten a couple of gas samples for GETGAMM, and remain optimistic that we can catch up overall and still accomplish our technical goals.

Ames student intern, April Davis, furrows in concentration while reassembling a sample transfer robotic arm.
Ames student intern, April Davis, furrows in concentration while reassembling a sample transfer robotic arm.

HMP 2014 Field Team leaves for Haughton Crater tests

Ames team members (Brian Glass and student intern April Davis) arrive in Iqaluit, en route to Devon Island, Nunavut.
Ames team members (Brian Glass and student intern April Davis) arrive in Iqaluit, en route to Devon Island, Nunavut.

An Ames-led group of six departed California, Tennessee and Grise Fjord during the last part of July, headed for Resolute, Nunavut and then a charter flight to the NASA field test site at Haughton Crater on Devon Island.  Team members for the current 2014 Haughton Crater deployment are: Dr Brian Glass, NASA Ames; Dr Pascal Lee, Mars Institute (based at Ames); April Davis, a student intern at NASA Ames; Bolek Mellerowicz, Honeybee Robotics; Jesse Weaver, Knoxville, TN; and locally Pauline Akeeagok from Grise Fjord.

Haughton Crater is a 20-km diameter impact structure with well-preserved beds of ice-cemented impact breccia, and is considered an excellent-fidelity Mars-analog site. Team members will gather gas samples to acquire more data on concentration and carbon isotopic composition for both methane and carbon dioxide collected from sniffer drill strings, for assessing both the flux and source of background methane emission from bedrock in the Arctic.  A new rotary-percussive planetary-prototype drill will be put through its paces at the Haughton Crater “Drill Hill” breccia site inside the crater.

For  the past decade a series of SMD-funded projects have advanced the technology readiness of both planetary drills and the automation needed to operate them at significant lightspeed communication distances from Earth.  Drilling will be needed to access the Martian subsurface at depths of 1 meter or greater, and to penetrate the ice layers found by the Phoenix mission at the poles.  It is the best means to retrieve samples from regions on Mars that could possibly harbor life now or in the past, and is a needed sample acquisition technology for multiple mission concepts proposed for 2020 and onward. The most recent generation of Mars-prototype robotic drills is the Icebreaker-3 rotary-percussive drill (see photo), which was tested in laboratory conditions this June at Honeybee Robotics in Pasadena. Its predecessor, the Life In The Atacama (LITA) drill, was tested at Haughton Crater in August 2013 (see earlier Mission:Ames posts) but lacked sufficient torque and shaft stiffness to make any significant penetration into the ice-cemented impact breccia at Drill Hill.  Earlier, heavier drill designs were capable of successfully drilling to 1-3m at the site with the same drilling technology,  but are too heavy to propose on an early-2020s Mars mission.

The current GETGAMM ASTEP project (by Indiana, GSFC, JPL, and Honeybee Robotics; Dr Lisa Pratt, PI) uses deeply eroded Paleoproterozoic bedrock in southwestern Greenland as an analogue for Mars. In a three-year field campaign, the project has analyzed seasonal and diurnal variation in the concentration and isotopic composition of methane, ethane, and hydrogen sulfide in bedrock boreholes.  GETGAMM has also used a copy of Honeybee’s “Life in the Atacama” (LITA-1) ASTEP-developed drill to drill 1-2m boreholes for monitoring.  Unlike most drilling scenarios for planetary missions, however, GETGAMM jettisons its drill strings in each borehole rather than bringing them back up for other holes – requiring many drill strings, which serve as emplaced shaft casings to keep holes open for subsequent gas monitoring.

In addition to its extensive Greenland field work, GETGAMM in the summer 2013 field season placed and sealed two monitoring drill strings at Haughton Crater (HMP Sites 2 and 3) which remain there currently (see photo).

IMG_3365

Methane (CH4) emissions on Earth are predominantly derived from thermal cracking of ancient organic matter in the deep subsurface or from microbial methanotrophic metabolism in low-salinity aquatic environments such as wetlands and lakes.  Although seasonal methane emissions from wetlands and lakes in Arctic regions are starting to be reported, there is virtually no published data on background methane emissions from unvegetated zones of fractured bedrock where methane could originate from underlying sedimentary strata or from adjacent wetlands and lakes.   GETGAMM study sites in Greenland (visited by Indiana University this past April) and the current deployment to Haughton Crater provide an opportunity to compare methane emissions from Archean-crystalline versus Paleozoic-sedimentary bedrock using perforated drill rods (sniffers) installed down to depths of 1 to 2 meters below the surface.

IMG_3344

Focus is the name of the game! Flight Day (Nov 17, 2013): Part 2 Experiencing Microgravity for the First Time!

My final blog summarizes my experiences of the flight and my evolving perspective on this type of platform for doing engineering, science and technology experiments. (Earlier posts, part 1 here, part 2 here).

First Impressions. So for a first timer, the first question asked is, “So what was it like?” I am so glad I had an audio recorder since my first experience on the onset of micro-gravity for the first time (and hopefully not the last time) in my life was said in deadpan fashion (totally not typical for me) “Alright. That’s interesting. Oh, wow. Okay. Yeah. We’re good.”

(The second question is “Did you get sick?” Well, it was challenging to keep disciplined to keep my head straight, especially during the 1.8-2G periods. I did not get sick, but got close to being sick on Parabola #25. But it was totally my fault since I looked out the window between Parabola #24 & #25 and saw the horizon almost vertical and that messed with my head. Lesson learned: don’t look out the window.)

In the interest of full disclosure, one payload had been having some intermittent issues that, like all intermittent issues, reared its head during a pre-flight end-to-end test a day before the flight. Luckily I had a contingency operations sketched out which performed perfectly. So when were on the plane and were doing the set-up and startup, I was really “uber-focussed” on the payload and not on myself for the first few cycles. When things started to get into a rhythm around Parabola #5 I had no idea we were 1/5th of the way done. Wow.

In between parabolas

“That was short. That was very short.” My comments after the very first parabola, which was a Martian (0.33 G) scenario. This image shows our team’s positions in between parabola 1 & 2. We did not have space enough to fully lay down so we reclined against the side of the aircraft. Left to right is Con Tsang, myself (monitoring a payload via a table), Cathy Olkin, and Alan Stern (face not visible). The photo is taken via Go-Pro camera on the head of Dan Durda who was across the way. Eric Schindhelm, who rounded out our team, was next to Dan and not in this view.

The rapid change between the onset of low-gravity for about 10-15 seconds followed by 2-3 sec transition to what appeared to be about 30s of 1.8-2G forces was very unexpected. With each parabola I did start to realize that the set-up time for the manual operation of one payload took way too long. (Lesson learned)

Sometimes we had unexpected escapes (I escaped my foot-holds on Parabola #7) and Eric Schindhelm (shown below) escaped the next one.

Parabola 8

Con was monitoring BORE and deftly diverted Eric’s collision path. For BORE, the key thing was to keep the box free from any jostling by others or the cables.

The payloads. We had two payloads, each with different goals for the flight. The fact that a decision to tether them together (made a few weeks before the flight) complicated the conops (concept of operations). One was a true science experiment: BORE, the Box of Rocks Experiment. The other was primarily an operations test for the SWUIS, the Southwest Universal Imaging System. Both experiments are pathfinder experiments for the emerging class of reusable commercial suborbital vehicles. Providers like Virgin Galactic, X-COR, Masten Space Systems, Up Aerospace, Whittinghill Aerospace, etc. You can read more about this fleet of exciting platform at NASA’s Flight Opportunity page https://flightopportunities.nasa.gov/, where they have links to all the providers.

Setting up SWUIS & BORE early parabolas

From left to right: Dan & Con monitoring BORE (aluminum box with foamed edges) while Cathy holds onto the SWUIS camera doing a “human factors” test using a glove (yellow). Image from Go-Pro camera affixed to the SWUIS control box.

View of SWUIS Target and Control Box

View of the SWUIS control box and Go-pro camera (used for situation awareness) while Dan’s holding it. You can see the SWUIS target that we used for the operations testing.  Image from a Go-Pro camera affixed to Dan’s head. Multiple cameras for context recording were definitely a must! (Lesson Learned)

Dan doing SWUIS targeting during Parabola

Dan Durda taking a test run with SWUIS on Parabola #23 (19th zero-G).

With BORE, we ask the question: how do macro-sized particles interact in zero gravity? When you remove “gravity” from the equation, other forces (like electro-static, Van der Waals, capillary, etc.) dominate. In a nut shell, BORE is a simple experiment to examine the settling effects of regolith, the layer of loose, heterogeneous material covering rock, on small asteroids.

Our goal is to measure the effective coefficient of restitution (http://en.wikipedia.org/wiki/Coefficient_of_restitution) in inter-particle collisions while in zero-g conditions. The experiment consists of a box of rocks. There are two boxes, one filled with rocks of known size and density, one filled with random rocks. Video imagery (30fps) is taken of the contents of each box during the flight. After the flight, the plan is to use different software (ImageJ, Photoshop, and SynthEyes) to analyze the rocks and track their movements from frame to frame. The cost of BORE is less than $1K in total, making it in reach of a the proceeds of a High School bake sale!

BORE does need more than 20 s of microgravity to enable a better assessment of rock movement, and this is exactly why this experiment is planned for a suborbital flight where 4-5 minutes of microgravity conditions can be achieved. Here, we used the parabolic flight campaign to test the instrumentation and get a glimpse of the first few seconds of the rock behavior. With this series of 15-20s of microgravity, we made leaps forward from previous tests using drop towers which provide only 1-2s of microgravity.

Today’s Microgravity platforms and durations of zero-G from https://www.nasa.gov/audience/foreducators/microgravity/home/.

  • Drop Towers (1-5 s)
  • Reduced-Gravity Aircraft (10-20s)
  • Sounding Rockets (several minutes)
  • Orbiting Laboratories such as the International Space Station (days)

Box of Rocks Sample Zero G Data

Some BORE images from one of the zero-G parabolas. Top Row: (left) Rest position of and (right) free-floating bricks of known size (they are actually bathroom tiles from Home Depot) but have the ratio L:W:H of 1.0:0.7:0.5. Surprisingly this is near the size and ratio of fragments created from laboratory impact experiments (e.g. Capaccioni, F. et al. 1984 & 1986, Fujikawa, A. et al. 1978) and similar to the ratio of shapes of boulders discovered on the rubble-pile asteroid Itokawa (see below).

Why is this important? Well, if you want to visit an asteroid someday and are designing tools to latch onto it, drill/dig into it, collect samples, etc. the behavior of collisional particles in this micro/zero-gravity environment is important. Scientifically, if you want to understand more about the formation, history and evolution of an asteroid where collisional events are significant, knowing more about how bombardment and repeated fragmentation events work is a key aspect.

Itokawa and ISS for Scale

Source: NASA & JAXA. The first unambiguously identified rubble pile. Asteroid 25143 Itokawa observed by JAXA’S Hayabusa spacecraft. (Fujiwara, A. et al. 2006). The BORE experiment explored some of the settling processes that would have played a role in this object’s formation.

SWUIS was more of a “operations experiment.” This camera system has been flown on aircraft  before to hunt down elusive observations that require observing from a specific location on earth. For example, to observe an occultation event, when a object (asteroid, planet, moon) in our solar system crosses in front of a distant star, the projected “path” of the occultation on our planet is derived from the geometry and time of the observation, similar to how the more familiar solar and lunar eclipses only are visible from certain parts of the Earth at certain times. Having a high-performance astronomical camera system on a flying platform that can go to where you need to observe is powerful. So, SWUIS got its start in the 1990s when it was used on a series of aircraft. You can read more about those earlier campaigns at http://www.boulder.swri.edu/swuis/swuis.instr.html.

Over the past few years I have been helping a team at the Southwest Research Institute update this instrument for use on suborbital vehicles that get higher above the earth’s atmosphere compared to conventional aircraft. Suborbital vehicles can get to 100 km (328,000 ft.; 62 miles) altitude, whereas aircraft fly mainly at 9-12 km (30,000-40,000 ft.; 5.6-7.5 miles). Flying higher provides a unique observational space, both spectrally (great for infrared and UV as you are above all of the water and ozone, respectively), temporarily (you can look along the earth’s limb longer before an object “sets” below the horizon) and from a new vantage point (you can look down on particle debris streams created by meteors or observe sprites & elves phenomena in the mesosphere). 100km altitude is still pretty low compared to where orbiting spacecraft live, which is 160-2000 km (99-1200 miles) up (LEO/Low Earth Orbit). For example, our orbiting laboratory, the International Space Station is 400 km (250 miles) in altitude.

Suborbital Flight Trajectory and access highlights

The SWUIS system today consists of a camera and lens, connected by one cable to a interface box. The interface box, which is from the 1990s version, allows one to manually control gain and black-level adjustments via knobs. It also provides a viewfinder in the form of a compact LCD screen. Data is analog but then digitized to a frame-grabber housed in a laptop. The 1990s version had a VCR to record the data, but since we are in the digital age, the battery-operated laptop augmentation was a natural and easy upgrade. The camera electronics are powered by a battery which makes it portable and compact. For this microgravity flight I introduced the notion of a tablet to control the laptop, to allow for the laptop to be stowed away. In practice this worked better than expected and my main take away is that the tablet is best fixed to something rather than hand-held to prevent unwanted “app-closure.” However, having a remote terminal for the laptop also would work.

Here’s a series of three short videos (no sound) of three legs when I got to hold the Xybion camera on Parabolas #13, 14 & 15. This captures how terribly short all the parabolas are and if you are doing an operations experiment, how utterly important it is to be positioned correctly at the start. One test was to position myself and get control of the camera and focus on a test target. A second test was to practice aiming at one target and then reposition for another target within the same parabola.

SWUIS_ZeroG_Parabola13_Web2

SWUIS_ZeroG_Parabola14_Web2

SWUIS_ZeroG_Parabola15_Web2

Above, the links are for lo-res (to fit within the upload file size restrictions on this site), no sound Videos of Parabola #13,14,15  (7,8 &9th in microgravity). By the third time I was getting faster at set-up and on-target time.

In 1-G this camera and lens weigh 6.5 lbs. (3 kg) . Held at arms length, when I was composing the test in my lab, as I scripted the steps, I had trouble controlling the camera. In fact, I was shaking to keep camera on target after some seconds. I was amazed at how easy it was to hold this in zero-G, and complete the task. The Zero-G flight told us many things we need to redesign. One issue we learned was the tethering cabling was not a good idea and in some cases the camera, held by one person, was jerked from the control box, held by another person. In the next iteration, one of those items will need to be affixed to a structure to remove this weakness.

My lessons learned from the whole experience: Everything went by very quickly. Being tethered was difficult to maintain. Design the conops differently (what we did seemed awkward). Laptop and tablet worked better than expected. Hard to concentrate on something other than the task at hand. Don’t plan too much. Have multiple cameras viewing the experiment. Need to inspect the cable motion via video, as it was hard to view it in-situ. Very loud, hard to heard, hard to know what other people were working on. The video playback caught a lot more whoops during transitions to zero-G than I remembered. Heard the feet-down call clearly but not the onset of zero-G. The timing between parabolas is very short. The level breaks were good to reassemble the cabling then. Next time, don’t hang onto the steady-wire which is attached to the plane (I got that idea from Cathy & Alan next to me) as it caused more motion than needed (the plane kept moving into me): instead remain fixed with the footholds and do crouch positions like Con & Dan did and let the body relax (Con & Dan were most elegant).

And, my biggest take-away of all: If you want to do a microgravity experiment, I strongly recommend doing a “reconnaissance” flight first. Request to tag along a research flight to observe, perhaps lend a hand as some research teams might need another person. Observe the timing and cadence and space limitations. Use that to best perform your experiment. It is an amazing platform for research and engineering development and can truly explore unique physics and provide a place to explore your gizmo’s behavior in zero-G and find ways to make it robust before taking it to the launch pad.

I am very much hoping to experience microgravity again! With these same two payloads or with others. One of the key points of these reduced-gravity flights, they fly multiple times a year, so in theory, experiment turn-around is short. Ideally I wished we flew the next day. I could have implemented many changes in the payload-operations and also in Kimberly-operations.

Our team is now working to assess what worked and what did not work on this flight. We achieved our baseline goals, so that is great! Personally, I wished I had not been that focused on certain aspects of the payload performance and made more time to look around. However, that said, my focus keyed me on the task at hand, the payload performed better than expected, and when you have 10-15s, focus is the name of the game!

It’s time to fly and go weightless! Microgravity Flight Day (Nov 17, 2013): Part 1, TSA Check, Board, Ascent, and Flight Profile.

This is a second entry (part one here, part three here) of a three part blog series about my recent experience in microgravity.

Team Photo Before Flight

The team is outfitted in their flight suits ready to go! left –to-right Kimberly Ennico (me), Con Tsang, Eric Schindhelm, Dan Durda, and Cathy Olkin. The photo was taken by Alan Stern, another member of the team, rounding us to six flyers. Con & Cathy had flown once before. Dan & Alan had multiple flight histories. It was Eric & I to savor the first-time-flyer award. All my colleagues work at the Southwest Research Institute in Boulder, Colorado.

In writing this blog entry, I still giggle at recalling the moments before the flight. We actually had a TSA check before boarding the plane. Now, pretty much every person has a go-pro or a recorder strapped to some limb, all carefully secured in the pockets of his/her flight suit. So as each person went through security, all the pockets had to be emptied before the TSA wand-scan, and then all the devices got re-pocketed ready for the adventure.

So what were in my pockets? I had some spare duct-tape affixed to plastic (for easy removal) to do patch-taping (came in super handy), a Nexus tablet for one of the experiments (with velcro on its backside ass it needed to be velcroed to the floor), 6 AA fresh batteries (for me to putt in one of the payloads during the setup leg), two checklists (both velcroed to me), and an audio recorder (affixed to my arm with a iPod armband). Any items that did not have some sort of way to be strapped or velcroed down had to be lanyard to you (such as a camera).

Author boarding plane

That’s me outfitted with documentation. I’m “walking documentation.” My right shoulder holds an audio recording device, my right thigh our checklists, and my left wrist (not shown) the list of tests vs. parabola. If you look closely my name badge is upside down, indicating I am a first-flyer.  (Photo by Dan Durda).

I was assigned seat 3C for takeoff (and yes, they actually gave us boarding passes!). There are a few rows of seats in the back which all fliers have to be buckled in for take up.  We boarded from the rear of the 727-200. There was an in-flight safety briefing (oxygen, life jacket, seatbelts). There is an emergency card, tailored for Zero-G, similar to what was provided for SOFIA. The plane is operated by Zero-G corporation, but registered under Amerijet. Its call sign was AJT213. The main body is empty with padded floors, walls and ceilings. There are specific areas to bolt down footstraps and equipment. For those items that cannot be bolted down, there are a series of Velcro strips we placed the day before. This turned out to be important as during the in between microgravity parabolas, you experience 1.2-2 G and holding free-floating equipment will immediate come crashing down. So this experiment which involve 5 separate free-floating equipment, having a “safe place to store.”

At approximately 9:16 am EST (local time), we taxied and the takeoff felt just like a normal plane. At about 10 minutes after takeoff, we were instructed we could begin our set-up. This set-up leg is about 15-30 minutes in length. From our practice sessions last week we knew that setting up SWUIS took about 15 minutes (with no glitches). BORE took a similar amount and they are dovetailed in such a way that we need to go in parallel but also stage certain setup first. So the checklist came in handy to remind us our “dance” for setup. We put in fresh batteries for our equipment and got it up and running in a we bit more than 15 minutes, after experiencing a momentary pause when a known interference issue might have reared its head, but it played nice that morning.  We had a pretty complex set-up, which I realized we should simplify on future flights and I made some oral notes into the audio-recorder.

We knew from the review the day before we would be experiencing 25 parabolas in total, performed in bunches of five with a flat 1-2 minutes of 1 G of “level” in between. The first “set” would be four Martian (1/3 G) and one zero-G. The second set would be one lunar (1/6 G) and 4 zero-G. And all the remaining parabolas would be zero-G. There was only one experiment on board who had requested the Martian gravity, all others needed zero-G. I gathered that the tourist flights get 15 parabolas also similarly put in 5-sets, and depending on the experiments on the flight, the number of Martian & lunar parabolas are tailored appropriately.

Besides the research teams, Zero-G assigns at least one “coach” per experiment group. He or she can help with the experiment logistics, and also provide assistance if one of the team comes down with motion sickness. To avoid motion sickness, I was strongly advised not to turn my head, or if I had to turn my head, to ensure I turned my entire upper torso and slowly, and this especially important during the high-G parts of the parabolas.

Let me divert from the experience to summarize what the plane is supposed to do to provide these “periods” of reduced gravity. This “reduced-gravity environment” is created as the plane flies on a parabolic path: the plane climbs rapidly at a 45 degree angle (“pull up”), traces a parabola (“pushover”), and then descends at a 45 degree angle (“pull out”). During the pull up and pull out segments, everything on board, then crew and experiments, experience accelerations of about 2 g (and boy did I feel this! This was actually more striking than the <1 g). During the parabola (pushover), net accelerations are supposed to drop as low as 1.5×10-2 g for about 15-20 seconds. For me, this was the largest take-away of the entire experience: those periods of zero-G went by very, very, very quickly. Also the period of 2G felt like they went by much slower, but essentially they were the of similar duration. I was very surprised, but when I decoded my voice recorder results and looked at the camera data taken by our two experiments (which were time stamps) those “pushover” events were indeed in “20 s duration time chunks.”

After  5 parabolas, the aircraft was leveled off to get us back to “old familiar” 1 G. This was a key time I learned to help re-position cables (and in many cases, people!) to get ready for the next series of five. We erred in our conops design to rotate things in threes, which did not work very well with the break after 5 parabolas. Having known now the importance of using those breaks, I would have designed the operations-experiment differently. The other science experiment was not affected by that issue.

After speaking with other folks, apparently, the “20s duration of zero-G” is driven by safety limits on the aircraft’s flight profile, to drop only a few thousand feet during the parabolas. Here’s where the suborbital rockets (one-use) and the emerging new reusable commercial suborbital platforms come in, as they promise 4-5 minutes of microgravity in a single flight. This longer duration of zero-G is highly attractive for some experiments. However, others may still want multiple zero-G test times in a short time and those are nicely provided by these aircraft doing parabolic flight profiles.

Our entire flight from nose-up to nose-down was only 2 hrs. The time between the start of parabola 1 and the end of parabola 25 was about 1 hr. It was quick.

After the flight I looked up the flight path on flightaware.com and we were doing some pretty neat aerobatics over the Gulf of Mexico. Our altitude ranged from 25,000 ft. to 20,000 ft. during the parabolic maneuvers.

Flight Path Actuals

Flight Altitude Profile

My final blog summarizes my experiences of the flight and my evolving perspective on this type of platform for doing engineering, science and technology experiments.

This little scientist’s first taste of microgravity research aboard a reduced gravity aircraft. Flight Day Minus 1 (Nov 16, 2013): Briefing, Test Readiness Review (TRR), and Load Up the Plane.

This is the first of a three-blog series (part 2 here, part 3 here) of this little scientist’s first foray into microgravity research. I participated in a research flight provided by the Zero-G corporation. To read more about their company go to https://www.gozerog.com/.

Zero-G operates a Boeing 727-200F aircraft, “G-Force One,” specially modified for reduced gravity operations. They provide opportunities for research flights (people and equipment) and also opportunities for you to experience zero-G (people). For experiment/research flights, you can apply directly to Zero-G where they organize a flight once they have enough researchers to fill a flight, or apply to NASA through their Flight Opportunities program https://flightopportunities.nasa.gov/, when NASA organizes the flight-manifest and Zero-G provides the flight platform. University students have additional opportunities to get flights through NASA’s Microgravity University, http://microgravityuniversity.jsc.nasa.gov/, with annual proposal calls. Had I known this when I was at school, I totally would have been a veteran flyer by now! Aircraft doing parabolic flight profiles are not restricted to the USA or to NASA. One list is provided here http://en.wikipedia.org/wiki/Reduced_gravity_aircraft.

The day before the flight, the flight director and series of “coaches” provided by the Zero G Corporation, came around to each of the research groups to look at the payloads and ascertain safety items. Prior to our arriving at our departure airport (in our case, Titusville, FL, but the “G-Force One” does fly from many airports, see their website), each team had to complete a Research Package, which contains the usual information such as mass, volume, power (including specifying “kill switch” items) and particular requests for gravity (the pilots can fly the airplane to simulate Martian and Lunar gravity in addition to near zero-G).  A series of weekly telecons were held in the weeks leading up to the flight to discuss interface needs and potential interference issues with others sharing the flight.

We meet the other teams for the first time. There were 6 experiments aboard this flight along with a BBC crew for the show Stargazing Live. One of the BBC presenters, Dara Ó Briain, joined us on this flight. So Kimberly gets to be an (unnamed) extra on TV show!

The other research experiments included (1) CubeSat solar-sail deployment mechanism, (2) testing a new IMU (inertia measurement unit), (3) evaluating sedimentations under Martian gravity, (4) Australian company developing ways to brew, and pour beer in zero-gravity, and (5) a mystery payload as it was under a NDA (non-disclosure agreement) with Zero G. Our Box of Rock science experiment (BORE) plus the SWUIS (Southwest Universal Imaging System) operations experiment rounded us to a total of 7 unique experiments. It was very fun getting to know the other experimenters, many who were also first timers!

payloads reduced gravity flight fit into suitcases

(left) Our two payloads in the hotel before driving out to the airport. (right) Easy to transport our suitcase-sized payloads to the airfield.

Setting Up Payloads for TRR

(left) Heading to the Test Readiness Review (TRR). Payloads coming in cardboard boxes, pelican cases and roller bags. (right) Julia Laystrom-Woodard, a senior engineer from CU Aerospace (another first time flyer like me) describing her solar sail deployment experiment at the TRR.

The Test Readiness Review (TRR) was held in a hangar near the plane. Each group had to show the Zero-G staff the exact payload and configuration and describe the experiment in more detail and call attention to unique configurations and requests. In our case, we were going to use both blue tooth and wireless communication to monitor our payloads during the flight, so this meant an interference test with the airplane would need to be scheduled later in the day. The reviewers were mainly concerned about safety, safety to ourselves, safety to fellow passengers and equipment nearby, and safety to the airplane. For example, we had filed down edges on our payload, but due to the free-floating nature of the experiment, they requested we “foam our edges.” As we had experienced flyers with us, we had brought foam pipe-insulation with us and, of course, the ever-essential duct tape.  However, we had to send a few members of our team over lunch to Home Depot to pick up some more. Duct tape and foam were the order of the day!

Assembling the Box of Rocks Experiment

Assembling BORE for the TRR. No shortage of duct tape and foam.

Assembling the Southwest Universal Imaging System

Assembling SWUIS and showing the layout of the tethering cables.

After the TRR, we waited for our time to set up in the aircraft. Along the floor of the aircraft are designated hook points. All payloads need to be secured to the floor with straps. For those that are “free-floating” they need to be secured within a storage box, whose dimensions were given to use prior. In our case, we configured our two free floating payloads to the size of two suitcase volumes. With our team of six, we identified where wanted our “footholds” to help keep us in place. These footholds were manually installed by the Zero-G folks and torqued down.

Loading payloads onto the plane

Loading up the plane via the back door to this Boeing 727. Not shown is that is another way to enter the aircraft via a large cargo bay door that can be opened on the side of the fuselage for larger payloads. For this flight, all the researcher’s experiments were all hand carried and broken down into smaller suitcase sized parts.

Setting up on the plane

(left) Securing one of the other experiments to the floor of the aircraft. You can see the large cargo door opened to the left. It was a hot day in Titusville, FL so it made setting up a bit cooler to have air circulating. (middle) Using loads of Velcro to provide “temporary” binding for our free-floating experiments during the high-G times. (right) Setting up and installing the foot straps (red cords) to specific locations on the  floor.

During this setup we learned where each group would be physically situated on board and we could re-assess interference items not previously considered. Each experimenter group was assigned a 10 foot x10 foot area on the plane and were designated by the color of their socks. We were the “grey team” and had a spot about half-way down the aircraft near the exit windows.

After the configuration of all the mechanical hold-down areas, we did our powered tests and also checked for interference. All looked good. Anything we would bring the next day to board the flight had to fit in our flight suit. We next stowed our two suitcase payloads for takeoff and headed back to the hotel for a team briefing and light dinner.

The next blog entries follow the flight day.

 

 

NASA817 Heavy

This post was provided by Tristan Hall, a student from Florida State University on the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) airborne science mission.

First off, sorry for not writing. I will make no excuses. Secondly, I got to fly in the DC-8! On a convection flight! The goal of the flight was to investigate marine convection in various stages: growth, mature, and dissipative. The mature is the best!

Down at the far end of the base is the entrance to the hanger that houses all the science equipment. It was a bright crisp morning (crisp… HA! it was probably 80 F at 5 AM!), and I’m grateful to Nick for waking up slightly earlier than usual so he could drop me off. There was a safety briefing before we got on the plane for us newbies. It’s basically like the one you see on a commercial flight. However, there is a little addition in case of a gas leak on the plane. In case of this, there is a little hood that pops on over your head and constricts around your neck to protect you. After the video, there was the flight brief that basically just went over the science objective. Interesting note that they like to put in there: the plane had 126,000+ pounds of fuel!

Post pre-flight brief I got to wander around for a few. This was fantastic! I got to walk up to the DC-8 and ER-2. RIGHT UP TO THEM! I could’ve touched the turbines if I wanted! There was a beautiful sunrise, and everything. Thank you nature for being you. 

(Photo credit to Tristan Hall)
(Photo credit to Tristan Hall)

I was advised by Hal Maring to ride in the “jump seat”. Well… let me tell you… WOW. This seat is located in the cockpit.

(Photo credit to Tristan Hall)
(Photo credit to Tristan Hall)

It sits a little higher than the captain’s seat, and you can see everything! I got to see takeoff and landing! One of the greatest experiences of my life. Seeing the three pilots (pilots? Two pilots and an flight engineer who controlled the power board) work together on takeoff; the giant checklists they had to go through; and the coordination with ATC was just impressive. I got to listen in on the headset to the pilots talk to each other and ATC. A funny joke of the morning was when a NASA jet took off with its afterburners, someone on the radio said that they “better see the DC-8 do that”. I wish! Whenever you think your plane is taking too long to depart the gate, I’d like you to think and understand the complexity of a plane. The amount of safety checks is phenomenal. The flight engineer gave me my brief. He pointed out my oxygen mask, and the pilot quickly turned around to show which one was his, and to not take it. The oxygen masks were the type you see the fighter pilots wearing – not the plastic bag that “may not inflate”. In case we were to ditch, I had to wait for someone from mission control to get me, or if it was quite bad, the pilots were to yell at me to get out, and they “wouldn’t be nice about it”. Understandable.

I tried as best I could to catch on to the lingo amongst the pilots and ATC, and boy was it interesting! NASA817 Heavy. That was the phrase I listened for. On the ATC channel multiple planes are talking so it can get confusing pretty quickly, but all I listened for was NASA817 Heavy. The “heavy” stands for (and I just Googled this, so naturally it’s true) when a plane is heavier than 300,000 pounds. How about that! On our ascent to altitude, a plane was in the region. “NASA817 Heavy, you’ve got traffic on your 11 o’clock”. Okay so, you know scenes in shows when planes crash in mid-air? I totally see that as plausible. After ATC said this, all three crew members stopped what they were doing and stared out the window. I did this, as well. I mean, I was basically flying the plane – these guys were depending on me. We kept looking… and looking… and looking until this plane comes zooming by. It looked like it was a mile away. Travelling at 300 mph, it doesn’t take long to get next to each other. As soon as the plane was in sight, it was out of sight. Thank an air traffic controller.

The dance that the flight crew went through was impressive. The pilot was basically not to be bothered, ever, I gathered. He flew. If the co-pilot was doing something (turning a knob, or piloty things), and the pilot needed to do something that was in the way, the co-pilot immediately removed his hands and stopped what he was doing so the pilot could finish his task. This happened when the pilot just wanted to increase the thrust. Just something as simple as that, and all hands were out of the way. Amazing stuff.

The flight itself was great, too. We were following storms, what else is better?! For ease of communication, the storms were named. One of the commanders on mission control on the plane was Hawaiian. He named one of the main storms we studied Leilani (heavenly lei; beautiful, eh?).

Leilani (Image credit to Tristan Hall)
Leilani (Image credit to Tristan Hall)

This beauty was fun. We got into the updraft of the storm which maxed out around 10 m/s (22 mph; that’s pretty good) followed by a 7 m/s (16 mph) downdraft. I got to feel weightless for a good second or two. WOO! Let’s just say, I’ll never be troubled by turbulence on a commercial flight, anymore. Mid-flight we got to spiral down to the boundary layer (near surface layer). As we spiraled down… and down… and down… the oil rigs kept on getting bigger… and bigger… and bigger. Then we straightened out and flew at 350 ft. Yea… 350 FEET! From the OCEAN SURFACE! AT 300 mph! The oil rigs were zooming by.

Flying near the surface (Photo credit to Tristan Hall)
Flying near the surface (Photo credit to Tristan Hall)

We finished a successful mission, and returned to Ellington. Landing was just as amazing as takeoff in the jump seat. The pilots kept asking me for hints on landing, and I was all like “guys… it’s your turn, you’ve got this”. The best I can compare that too is a simulator on your computer or something. Once the runway is in view it just keeps getting bigger and bigger, until the bump of landing. The end to a wonderful day.

Overall, this was just an amazing experience. It was truly breathtaking and inspiring. The NASA Airborne Science program is unique. I hope to be a part of it for the years to come. There is so much imagination, and pure brilliance that goes into the science equipment onboard the plane. In case you are wondering, the plane is outfitted such that basically every-other window is removed and replaced with an instrument. So there are around 30 instruments sticking their little noses outside the plane. The engineers need to be very creative to design their apparatus so that it conforms to the plane. Speaking of the plane, there were first class seats, and Bose noise-cancelling headphones! Oh yea, top notch. These are essential as the plane is LOUD without the headset, and everybody needs to talk on the mission channel. The first class seats are must as who the heck wants to sit in a tiny seat for 8 hours, and not be able to move?!

I will forever remember this experience.

A Direct Redirect

This post was provided by Tristan Hall, a student from Florida State University on the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) airborne science mission.

Well I left you hanging last time with me in pure overload and shock – nothing’s changed. This is still amazing, but now I’m overloaded because of the requirements of the job! I wake up early every morning and glean all I can from every model that I have access to. I then use my best judgment and years and years (3, cough) of collegiate knowledge to work on how the weather is going to change and affect our science objectives. For instance, there are these things in the atmosphere called shortwaves. [Begin digression] They are called shortwaves because they are smaller than the larger scale waves. Imagine an ocean wave rising toward the beach with a surfer on it. The surfer’s board makes waves within the big ocean wave. Those are short relative to the big ocean wave – shortwaves. They can kick cyclones (a spinning system – not necessarily a tropical cyclone) into action, or they can break off fragments of an upper-level disturbance away from the flow and make it remain in place for an elongated time dropping days of rain on one location (similar to about a month ago in the Southeast). Those are the fun, tricky little boogers in our atmosphere that like to stir things up. Jerks. [end digression]. The chemical modelers wanted to sample some smoke. So, we planned a mission for smoke with a flight plan all figured out to penetrate the higher concentrations. Well, as the plane neared the smoke during the flight, along came a shortwave and moved it all out of the flight path – sorry team. I love the weather – it really likes to mess with you when it has the chance. Predicting exact orientation, time of arrival, and intensity is universally beyond our control, though. We can tell that shortwaves will move through a system, with a range of intensity, and get an approximate time for arrival and orientation, but no combination of models will agree on all results.

Time is flying by, I no longer know what day of the week it is. I only know if it’s a flight day or a planning day. Planning days are great! Certain teams have different objectives, so when conditions are favorable for more than one teams’ objective, a debate ensues! Us forecasters have to provide an unbiased overview of the weather in support of all objectives (hurricane… hurricane… hurricane…). However, when conditions are favorable for one objective, we will mention it (hurricane… hurricane… hurricane…).

Monday (26 August) was the first of a two-day flight, also known as a suitcase flight. Nick mentions what that is below, so I’ll leave the explanation to him. On Monday’s weather briefing, all the models pointed to showers or thunderstorms within the area of Ellington (lingo: VCSH or VCTS. SH: SHowers, TS: ThunderStorms, VC: within the ViCinity (5 to 10 statute miles)). The DC-8 is a beast and can take off in mostly anything, while the ER-2 is a little fragile. It has giant wings and a tiny fuselage which requires strict criteria for takeoff and landing. Its wings are so big (this sounds like the beginning of a “yo momma” joke) that when it taxis it has special little training wheels to support them. The instruments aboard the ER-2 are susceptible to water, as well (why is a meteorological research vessel’s instrument susceptible to water?).

Days go into planning these flights, so telling a group of people who are anxious for a research flight that they might not get to do it, is daunting. The forecast basically was looking like spotty convection. So, we thought the ER-2 could take off possibly between one of these atmospheric precipitable tantrums. The plane needs to be ready to fly and take off 2 hours before takeoff. The pilot (basically a super-low orbit astronaut; 99% of the earth is below this person as they fly at high altitudes), who wears a form of a space suit, can only be suited up for so long, so the flight can’t really be delayed for an extensive period of time. But I digress… again. We were instructed to come in and assist in the decision on whether the flight was a go or no-go. Well, we had to disappoint – it was too much of a risk for the instrumentation to get wet. However, the DC-8 got off without a hitch, and was en route to the Yosemite Rim Fire. The ER-2 had to sit in its hanger and wait for Tuesday.

On Tuesday (27 August), the second leg of the suitcase flight, conditions were quite nice, and the ER-2 could takeoff to study air up along the Mississippi River Valley and Great Lakes region. The DC-8 took off from Spokane, WA to follow the smoke plume toward Winnipeg (sorry Canadians for the smoke, eh). Well… here is where the horn tooting comes in (enter XKCD comic about “tooting your own horn”. Google it, it’s hilarious.). Earlier in the flight plan while the plane was in Montana, I was looking at satellite and radar and noticed some small convection starting near Lake Manitoba. It seemed that the region’s conditions were favorable for afternoon convection (there was a sufficient amount moisture, to keep it minimal). Our NEXRAD system doesn’t supply data outside US territories. This is what the on flight crews have access to if they would like to look. It’s granulated and not the hires stuff we look at.

 I took it upon myself to read the met discussion from Environment Canada (cool name). A special advisory was issued for southern Manitoba indicating that the region, indeed, was going to experience some heavy convection. Yahoo! The plane’s 3rd waypoint down the road was right in the path of these storms – which were producing a good amount of lighting, including some cloud-to-grounds (CGs), by now. The plane was flying somewhere around 16,000 feet, and these storms were towering to 40,000+ ft. I sent out a warning on our communications channel (it’s really just an instant messenger called “xchat”… it’s not dirty… the “x” is just network lingo stuff) that the plane was headed for a direct hit with these storms. They were still 30+ minutes out, so there was no immediate danger, however, the storms were not going away – they were building.

Radar image of building storms with lightning, flight track, and DC8 position. Blue icons are in cloud lightning strikes, while red are cloud to ground. (Photo credit to Tristan Hall)
Radar image of building storms with lightning, flight track, and DC8 position. Blue icons are in cloud lightning strikes, while red are cloud to ground. (Photo credit to Tristan Hall)

Ten minutes passed by and the storms were getting bigger, so, I sent out another warning with a graphic and a little more detail, and informed the big cheeses directly (who couldn’t see it due to the NEXRAD dilemma). They caught on that they couldn’t see the convection and that the plane was heading right into an electrified storm (that’s right! listen to the grad student who’s been staring at the radar all day!). Now, the plane has on-board radar, but it only can see so far, and the way these storms were tracking (along the next leg of the trip), the plane would have had to perform some crazy maneuvering to get around them and get back on track. So, the big cheeses informed the pilots on our xchat to confirm that there were troubling storms ahead, and that some moron wasn’t just saying “beware”. The plane was rerouted and on it went. I know… exciting right? Well it was! I directly had an influence into a flight track and… yea… I’ll say it… saved 40+ lives (but seriously, it wasn’t that dramatic, I kid). Now when I say something on xchat, I hope these people understand “thall” means business!

Like sands in an hourglass, these are the days of my life in SEAC4RS. Keep following along, welcome if you’re new, and I thank you for reading.

Ames-led team tests new planetary-prototype drill at Haughton Crater

The Icebreaker project team deployed from Resolute to Haughton Crater on Devon Island on August 12, catching the last remnants of favorable Arctic weather in time to set up our test site at Drill Hill in the crater.  A good thing, as the weather immediately worsened…  ten days of below-freezing temperatures, high winds and snowfall followed.  It was in some respects more logistically challenging than the University Valley tests with a different drill, last January in Antarctica (see earlier Mission:Ames posts).

Our NASA-Honeybee Robotics team persevered, despite snow drifts that made it difficult on quads to reach the test site, and icing that periodically brought down communications.  We tested the new Icebreaker-2/LITA drill, on an equal footing with other planetary-prototype drills tested at Drill Hill since 2004.  It cumulatively went 3.2m depth over 4 holes… but found that the lightweight, low mass, low-downward-force design did not fare well in frozen breccia, with its deepest hole reached at 90 cm, where it stuck.  Previous tested drill prototypes (with 3x the mass and more power) managed 1.5-3m depths under similar conditions at the same site.  Given that this new drill was originally designed only for half-meter deep sampling from a mobile platform, it met expectations.  And this is a successful test result — even if this drill design didn’t go deeper.  It shows us where we are on the (light-weight/low-energy) vs (depth into hard materials) tradeoff here, compared to competing designs and concepts, and this is needed and useful for future drilling mission proposals and planning.

Alex Wong from Honeybee Robotics sets up the Icebreaker-2 drill inside a dome tent on Drill Hill.
Alex Wong from Honeybee Robotics sets up the Icebreaker-2 drill inside a dome tent on Drill Hill.

Opportunistically, our team also sank three sniffer-shafts for the GETGAMM project (see last post), two with a commercial rotary-percussive hand drill (to 2m depths) and one with Icebreaker-2 (to 80cm).  We drew cuttings and gas samples to carry back to NASA Ames and then to forward to Lisa Pratt and her team at Indiana University.  The two 2m-deep monitoring stations remain on Devon Island for future monitoring and sampling.

GETGAMM project gas-monitoring drill string, being sunk into the area known as Von Braun Planitia near Haughton Crater.
GETGAMM project gas-monitoring drill string, being sunk into the area known as Von Braun Planitia near Haughton Crater.

We closed up the Haughton Crater camp on 21 August, packed our equipment in Resolute for shipment back to the USA and NASA Ames, and left the Arctic for Yellowknife and home over this past weekend.

The Icebreaker-2 drill 2013 field test team, outside the Drill Hill dome tent in Haughton Crater: Alex Wang from Honeybee Robotics, and Brian Glass and Sarah Huffman from NASA Ames.
The Icebreaker-2 drill 2013 field test team, outside the Drill Hill dome tent in Haughton Crater: Alex Wang from Honeybee Robotics, and Brian Glass and Sarah Huffman from NASA Ames.

Welcome to SEAC4RS

This post and its photos were provided by Tristan Hall, a student from Florida State University on the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) airborne science mission.

I first arrived in Houston for SEAC4RS on Sunday, 18 August. My colleague Nick picked me up from the airport after a less-than-perfect landing. This was my second time arriving at Houston-Hobby, and 7th flight in two months; so naturally, I’m a pro. I took the stairs down to baggage and lugged my under-50 lbs baggage to go meet Nick at the pick-up area.

Nick drove me to the hotel which is basically an apartment; including a kitchen with all the necessary amenities, and a living room. He had to go back to his shift at Ellington; so I was left to let my imagination run wild on what to expect tomorrow morning. Later my professor took me out for dinner, to my surprise, for all the work I’ve done back in Tallahassee. Thanks!

On Monday we took off bright and early for Ellington. When I arrived, I was in awe that I’m at a NASA-affiliated facility. The Meatball is everywhere; there are planes, barbed-wire fences, and guards. I have to go into an office to get my visitor badge – they forgot to sign me up for the “restricted sector” badge… again. 🙂  Oh well, I’ll make do. Off to the hanger where our command center is.

Being thrown into a shark tank doesn’t even come close to describe how I felt on day 1. Holy Toledo! 0-60 in 1.5 seconds. Everybody had already been in the swing of things for a couple weeks, by now, so I had to catch up fast! I had to look at the weather! Best Job Ever! Knowing how to forecast is more than just looking ahead – it’s looking behind, as well (that’s philosophical for ya there). I had been preoccupied in Tallahassee for the past couple weeks setting up a lab for ozonesonde measurements, so I had slacked a little on the whole “looking behind” aspect. In other words, I had no idea what the weather was like.

Max and I filling a balloon for an ozonesonde launch. (Photo credit to Antonio Riggi)
Max and I filling a balloon for an ozonesonde launch. (Photo credit to Antonio Riggi)

I spent all day trying to absorb everything. Every forecast model and how it compares to every other model. Every forecast discussion. Every historical satellite image I could find. Every variable of every model we have plotted on our FSU website and every other website out there (seriously, there are a plethora). Everybody here was on the same level as each other and knew what to expect of one another. I was overwhelmed. I felt underprepared, and I felt like I would never catch up.

This was a nowcasting shift, which is similar to forecasting, but only a couple hours in the future. The flight plan was pretty set, and conditions weren’t too nasty so it was an easy shift. I spent most of my time looking back, getting to know the weather. Dinner was soup and salad at the hotel lobby. Free is good.

Day 2 was a little better. On non-flight days we give a met briefing to lead off the science meeting. I got to see what to expect, and more importantly, what’s expected of me in the days to come. We report on current and future conditions, and point out specific regions of interest if they align with the science objectives of the campaign. Interests include convective outflow, smoke transport, and the North American Monsoon (NAM). After this, my time was spent understanding the atmosphere and its dynamic beauty. There is a trough in the east that just won’t go away, a cut-off low off the coast of California — with nothing steering it, a front moving down through the Great Lakes region, and nothing exciting over the Atlantic, to name a few. Dinner was “BBQ” provided by the hotel. It was chopped beef (not pork; or brisket!); however, it was sweet with a little too much liquid smoke. What’s with these Western folk? However, I had 2 buns, so I’m not really complaining. I do an excellent job of eating!

Day 3 – Wednesday – another nowcasting shift. I felt way more comfortable today. I was getting into the swing of things, and feeling more comfortable speaking up. The flight for today wanted to sample convection before it was intense. So, we had to find where convection was going to be and direct the planes to it. We settled on northern Alabama which had plenty of little popcorn cumulus. A view of the flight path could make you sick, it’s so swirly. Imagine a child drawing scribbles on a piece of paper. The pilots get in to the clouds and just go wild. The return path for one of the planes looked like it would intersect too strong convection; so it got really exciting for about an hour — and tense. People were depending on our radar skills. Once the planes made it past the bad convection, Nick and I displayed our GR2Analyst skills recreationally. Those non-met folks were amazed — cross sections; 3D plots; they kept coming back with new people in-tow asking us to show the 3D images. Dinner was stuffed peppers from the hotel! Not too shabby, again.

So far, I’ve seen an F-4, the 747 Space Shuttle Carrier, several NASA jets (which, for some reason nobody will let me drive. C’mon there are like 20 of them, let me take one out!), the DC-8 taxi, and the ER-2 take off and land, which has a chase car… Yup, a car that chases it as it lands, how do I get in that?!  It has stabilizers on the back because it goes so fast!). I am learning fast, having a wonderful time meeting all these people, and having an EVEN MORE wonderful time forecasting and nowcasting. This is truly an experience of a lifetime. Thanks professor!

ER-2 Chase car. Can I ride in this? (Photo credit to Tristan Hall)
ER-2 Chase car. Can I ride in this? (Photo credit to Tristan Hall)

I hope you enjoyed this post, and follow along for the next month and a half!