Pluto Exotica. Atoms. Pick Up Ions. Bow Shocks. Suprathermal Tails. X-Rays. UV airglow.

The morning of the last day of this week’s July 22-26, 2013, Pluto Science Conference opened up the discussion with outer atmosphere (far out) and magnetosphere (really far out) talks.

Fran Bagenal (University of Colorado) started the session with a talk on “The Solar Wind Interaction with Pluto’s Escaping Atmosphere.” Pluto’s interaction with the solar wind was first suggested in 1981 by Larry Trafton. There are two generally predicted regimes of what this interaction might look like: (1) Venus-like (small escape rate) and (2) Comet-Like (high escape rate). A key parameter distinguishing the two is what the atmospheric escape rate might be, that is, how many atmospheric molecules (assumed to be nitrogen) are escaping from Pluto, no longer being bound by gravity. Current estimates for the escape rate, based on a number of approaches, notably a recent one by Darrell Strobel (2012), have this number at 2-5×1027 molecules/sec.  This is large enough to suggest Pluto will appear to be “comet-like” in its interaction with the solar wind. However, we need to wait until 2015 for the New Horizons fly-by with their in-situ particle instruments SWAP & PEPSSI to make the interaction measurements.

When describing the Pluto System in terms of solar wind interaction, Fran Bagenal showed this image, which superimposed one of Darrell Strobel’s atmospheres (characterized with an exobase at 12 Pluto radii). Pluto becomes a “large object” for interaction with the solar wind.

Solar Wind Perspective Pluto

When solar wind particles (protons) interact with the Pluto atmosphere, their path through space is bent along the magnetic field lines, and to convert momentum, pickup ions (neutral hydrogen atoms from the heliosphere that undergo a collisional charge-exchange interaction with solar wind protons, get ionized, are “picked up” by the solar magnetic field) get tossed onto new trajectories. Those ions are charged and will begin to rotate and follow electrical field lines. Where do the ionized particles go? A weak magnetic field will create large gyro-radii of pick-up ions which can extend millions of kilometers upstream of Pluto.  This is best modeled with a kinetic interaction.

Peter Delamere (University of Alaska, Fairbanks) spoke in greater detail about “The Atmosphere-Plasma Interaction: Hybrid Simulations.” Plasma interaction is an atmospheric diagnostic tool. Neutral gases are not easily picked up, but ions and how they interact with the solar wind can be detected with in-situ instruments such Hew Horizons’ SWAP and PEPSSI. He discussed his model plasma interaction mode, which was validated using Comet 19P/Borrelly that had been visited by Deep Space 1 on Sept 22, 2001.

Comet Borrell Solar Wind Interaction

Example of Comet 19B/Borelly environment time vs. energy reveals the structure of the interaction between a comet and the solar wind. The X-axis is time from closes approach, with the Y-axis energy. The color code is the number of particles counted by the PEPE instrument aboard Deep Space 1. This is similar to what the data is expected to look at for Pluto when New Horizons reaches it in 2015, however, the solar wind at 33 AU may be more extended and more diffuse and therefore the signal strength (in terms of counts) will be much less.

If we can understand where the bow shock forms, this becomes a diagnostic of the atmosphere, and if indeed the exosphere extends out to 10 Pluto radii as suggested by recent work by Darrell Strobel (2012) and other models, then this is a sizable ‘obstacle.’ But is it inflated enough to form a bow shock? Peter Delamere thinks so. He stepped us through a variety of simulations. One of the simulations predicts a partial bow shock. If you increase Qo (the escape rate parameter, predicted to be in the 2-5×1027 N2 molecules) or increase magnetic field strength you can create a full bow shock. Future work includes adding the pickup part of the solar wind model as input.  If there is a very slow momentum transfer, perturbed flow could extend out to an AU.

Simulations predict all sorts of shock structures (Mach cones, bow shocks), but these structures depend on the escape rate parameter.

Solar Wind at Pluto Model

Example of a plasma interaction mode for three escape rates, decreasing from right to left. This is a slide in space of plane vs. distance from.  The white lines are sample solar wind proton trajectories. The color scale indicates ion density. The solar wind (and hence, the direction from the sun) is incident from the left. Pluto is at (0,0).

Predictions at Pluto. He anticipates significant asymmetry. The predicted bow show could be as far as 500 Pluto radii.

Heather Elliot (SwRI, San Antonio) in her talk “Analysis Techniques and Tools for the New Horizons Solar Wind around Pluto” described the New Horizons SWAP instrument and the different rate modes (sampling rate and scan types) it will be using during the 2015 encounter.

NH SWAP Instrument Cruise Data

Measurement of the solar wind taken with the SWAP instrument aboard New Horizons during the last 6 years of cruise. This data set covers AU=10 (Saturn distance) out to AU=23 in 2012. The solar wind is mostly protons (H+). The second most abundant species are alphas (He++). The colors are the intensity of species. The vertical axes are energy per charge units and the horizontal axis is time.

Fitting the SWAP data to a solar wind model requires making adjustments for view angle and during the hibernation period, when they do not have attitude information, they have modeled the Sun-probe-Earth angle to estimate the attitude and this works well to fit their data.

John Cooper (NASA Goddard) spoke about the  “Heliospheric Irradiation in Domains of Pluto System and Kuiper Belt.”  He is interested in computing the “radiolytic” dosage onto bodies in the outer solar system (that is, the effect of how molecules break down or change molecular band structure due to the influence of radiation, such as by cosmic rays, particles, UV, etc.). For this he needs measurements of the particle flux at large AU.  New Horizons joins its cousins Voyager 1 & 2, Pioneer 10 & 11 and Ulysses in exploring the outer solar system.

S/C Outer Solar System

Location of the NH spacecraft (orange on the left, purple on the right) for two different views of the solar system. Also plotted are deep space missions Voyager and Pioneer, among many. The left view is s top down view of the solar system with the Sun at (0,0), the axes are in AU, where 1 AU (Astronomical Unit) is the distance between the Earth and Sun. The right is a view of time vs. latitude for the crafts. Comparative data sets to New Horizons, which travels along the solar ecliptic, are Pioneer 10 and early Voyager 2 data.

He showed computations of irradiation dosage when applying those particle rates measured by New Horizon’s PEPSSI instrument and instruments aboard Voyager 2 and Pioneer 10.

He maintains a database of all particle instrument flux measurements at the Virtual Energetic Particle Observatory http://vepo.gsfc.nasa.gov.

Thomas Cravens (JHU/APL) with ”The Plasma Environment of Pluto and X-Ray Emission: Predictions for New Horizons,” asked “What happens when you get to within 1000 km of Pluto?“  Pluto is anticipated to be “Comet-Like” in its interaction with the solar wind, however when you get closer to Pluto (around 1000 km), it may more closely resemble “Venus-like” interaction. He is trying to compute where the charge-exchange boundary could be, probably around r~5000km. This is boundary between the kinetic (r>5000km) and fluid (r<5000 km) regimes, essentially probing the ionosphere regime of Pluto.

Switching to slightly lower energies, Casey Lisse (JHU/APL) gave a talk on “Chandra Observations of Pluto’s Escaping Atmosphere in Support of New Horizons.” X ray interactions (charge exchange, scattering and auroral precipitation) require an extensive neutral atmosphere, which is what is expected at Pluto. Interaction of solar wind with comets has consistently shown X-ray emission. He expects to see X-ray emission from Pluto. If detected it would tell us about the size and mass of Pluto’s unbound atmosphere. The best time to look for x-rays at Pluto is about 100 days after a large CME (corona mass ejection) event, which is about the time it takes for CME to get to Pluto at 33 AU.

He and his colleagues applied for, and got, time on NASA’s Chandra X-ray telescope. On Chandra, Pluto & Charon will appear to fill one Chandra pixel using the Chandra HRC instrument.  He ended his talk suggesting that looking at background counts with the LORRI and RALPH CCDs might serve as a poorman’s x-ray detector. It is also possible that PEPSSI background counts could be used to infer presence of lower X-rays.

Kandi Jessup (SwRI) gave a talk addressing the “14N15N Detectability at Pluto.” We care about 14N15N because it can be used to determine the 15N to 14N isotropic fractionation. This can help tell us about the evolution of Pluto’s atmosphere. Learning about Pluto’s atmospheric evolution history also provides vital suggestions for the evolution of equivalent TNOs (Trans-Neptunian Objects) and other objects in the Kuiper Belt, and hence, the outermost parts of our Solar System

The measurement will be the UV spectral observations during the solar occultation of Pluto by the Alice instrument during the New Horizons fly-by. N2 is the dominant absorber between 80-100nm. To identify the molecule 14N15N they use an atmosphere model from Krasnopolsky & Cruikshank (1999). That model does not have a troposphere. Next they need absorption cross-sections (a parameter that quantifies the ability of a molecule to absorb a photon of a particular wavelength) for 14N2 and 14N15N. 14N2 is the more dominant species and they are trying to find a very small percentage for 14N15N. Using these simulations they anticipate the Alice instrument will be sensitive enough to detect at least a 14N15N to 14N2 ratio of 0.3%. They will be look at the UV spectrum between 88 and 90 nm where the 15N lines spectrally shifted from 14N line. 14N15N to 14N2 ratio has been measured on Mars (0.58%), Titan (0.55%), and Earth (0.37%). What ratio will Pluto have? New Horizons data will hopefully tell us.

Randy Gladstone (SwRI, San Antonio) spoke about “Ly-alpha at Pluto.” Pluto ultraviolet (UV) airglow line emissions will be very weak, except at HI Lyman-alpha (Ly-a). Ly-a at Pluto could have both a solar (Sun) and an interplanetary (IPM/interplanetary medium) source. Ly-a should be scattered by Hydrogen atoms in Pluto’s atmosphere.  He uses the Krasnopolsky & Cruikshank (1999) Pluto atmosphere model that predicts the number of Hydrogen atoms at altitude. There are several observations near Pluto closest approach planned with the New Horizons Alice instrument to measure Lyman-alpha emissions.  This data will provide information about the vertical distribution of H and CH4 in Pluto’s atmosphere. Observation of the IPM Lyman-alpha source will be unique and provide important information to model Pluto’s photochemistry, especially for the nightside and winter pole region.

Randy Gladstone (SwRI, San Antonio) ended the session with a talk about “Pluto’s Ultraviolet Airglow.” He presented a model by Michael Stevens (Naval Research Lab), which has been used to explain the Cassini UVIS (Ultraviolet Imaging Spectrograph) observation of UV airglow at Titan over the 80-190 nm wavelength, emissions arising from processes on N2 (Stevens et al 2011). The model is called AURIC, the Atmospheric Ultraviolet Radiance Integrated Code. This model will be used for interpreting Pluto atmosphere data taken at UV wavelength with the New Horizons Alice instrument.

If Pluto was not already an exotic place to visit with all the predictions about its formation, its interior, its surface, it surface-atmosphere interaction, its composition, etc., it certainly will prove to be an amazing place if any or all of these predicted upper atmosphere and mesosphere molecular species, ions, and high energy particles are measured with the New Horizons spacecraft!

Winds. Fog. Frost. Global weather predictions on Pluto.

Talk summaries from the Pluto Science Conference held July 22-26, 2013 in Laurel, MD continues. This blog entry is about atmosphere presentations on July 26th.

Angela Zalucha (SETI) began the discussion with her talk entitled “Predictions of Pluto’s vertical temperature and wind structure from the MIT Pluto general circulation model.”

A general circulation model (GCM) solves conservation of momentum in 3D, conservation of mass, conservation of energy and equation of state (P=rRT). It can tell us some fundamental atmospheric properties such as composition (what is it made of), pressure (how much is there?), temperature (how hot is it?), and wind (how does it move?). In particular, understanding wind is one of the most important things a general circulation model gives you, because it is so hard to observe remotely.

She presented her model, based on the MIT (Massachusetts Institute of Technology) GCM that was originally designed as an ocean model. She turned it upside down to make it an atmosphere model. It has multiple layers, CH4 mixing ratio at 1%, CO mixing ratio at 0.05%, includes atmosphere models (Strobel et al 1996) and runs for a 15 year Earth integration rate (she notes that is probably not enough time to have the atmosphere equilibrate). She sets frost layers on the surface as a parameter, and explored different surface pressures (8 16, 24 microbars). She uses the Ecliptic North convention. One output from this model are curves of temperature vs. altitude, called a temperature profile. She reported the presence of a frost predicts a much colder atmosphere. Future work will be to investigate other ice distributions, put in a CH4 transport model, and improve surface model.

Temperature Profile

Example of a suite of temperature profile curves from the Pluto MIT GCM. Temperature in Kelvin is shown for a range of altitudes in kilometers. The MIT GCM has assumed a particular Pluto radius to set zero altitude.

Melanie Vangvichith (LMD, Paris) in her talk “A Complete 3D Global Climate Model (GCM) of the Atmosphere of Pluto” presented another general circulation model for Pluto, the LMD (Dynamic Meteorology Lab) GCM. For a thin atmosphere that is expected on Pluto, their model uses careful parametizations of the nitrogen condensation and sublimation surface-atmosphere processes, which they claim is key (Forget et al 1998). They also adopt a particular initial frost distribution, the distribution from Lellouch et al 2000.  Their model is run for 140 Earth years, starting with 1988 adopting initial conditions based on observations. Conclusions. When adopting a 20 MKS thermal inertia, the model is in agreement with occultation data to date, but this model does not predict a troposphere, just a “big stratosphere.”

Winds from the LMD GCM

Example of a wind prediction from the Pluto LMD GCM. The temperatures (in K) are represented by the color and the arrows represent the wind direction and speed at particular height. This is mapped onto a lat/long grid using the right-hand-rule (i.e. matches the Marc Buie convention).

In the previous entry, I had commented on thermal inertia and its role in atmosphere dynamics. To recap here, thermal inertia is a measure of the ability of a material to conduct and store heat. In the context of planetary science, it is a measure of the subsurface’s ability to store heat during the day and reradiate it during the night. This has natural consequences for deriving what happens to processes that require an exchange of heat. A GCM uses thermal inertia of the surface as a key parameter. There is a currently big disconnect in the community over what Pluto’s thermal inertia is. In E. Lellouch’s talk on Jul 23 he reported that Spitzer & Herschel have measured Pluto’s thermal inertia as 20-30 MKS (Lellouch et al 2011). However, Pluto atmosphere pressure models needed to match occultation data by C. Olkin & L. Young require Pluto have a much higher thermal inertia >1000 MKS to explain their occultation measurements (this meeting). Thermal inertia is usually quoted in MKS units, where MKS is an abbreviation for “J K-1 m-2 s-1/2.”

Anthony Toigo  (JHU/APL) with his talk “The Atmosphere and Nitrogen Cycle on Pluto as Simulated by the PlutoWRF General Circulation Model” presented a third general circular model. Their GCM is based on the terrestrial model used for Weather Research and Forecasting (WRF). It has been adopted for Mars, Titan and Jupiter, and they have adopted it for Pluto.  They ran their model for two extremes of thermal inertia, as this is a current open question in the community. They are just attempting to see what effect this has on the predictions.  They also looked at the effect of the nitrogen cycle adjusting amount of nitrogen ice. Conclusions. The model is in agreement with the increase in pressure derived from observations, supports large volatile abundances, and shows a pole-to-pole transport. Future work for Pluto includes constraining the volatile cycle and looking at surface wind relations.

The three modelers sparked a lively debate at the Pluto Science Conference. Sometimes they agree and in many cases they diverge greatly. It was neat to see how different groups tackle the same physics problem. It came down to the details and initial assumptions. GCMs have become such powerful tools to describe dynamics (changes) in atmospheres, but because there are still so many assumptions about Pluto’s surface and atmosphere, it will only be until New Horizons provides measurements to start anchoring down these models.

More predictions about Pluto’s changing atmosphere. And Charon may have a few surprises of its own.

Blog series continues. These are summaries of talks presented on July 23, 2013 at the Pluto Science Conference. The New Horizons mission will fly by the Pluto System on July 14, 2015, a place that has never been explored before by any other spacecraft. Many questions about the Pluto System remain unanswered. For more information about NASA’s intrepid explorer to the Solar Systems’ Third Zone go to http://pluto.jhuapl.edu/ and https://www.nasa.gov/mission_pages/newhorizons/main/index.html.

Richard French (Wellesley College) presented a talk on “A Comparison of Models of Tides in Pluto’s Atmosphere and Stellar Occultation Observations.”

We have come to understand that Pluto’s atmosphere is cold & tenuous, has a long radiative time constant, shows weak diurnal variations, indicates seasonal transport of volatiles with long term variations of atmospheric mass, and seems to be convectively stable. Current Pluto general circulation models (GCMs) predict smooth T(P) profiles reveal mean circulation and thermal structure. But there are problems. GCMs predictions (with these smooth T(P) profiles) are inconsistent with stellar occultation data, which imply much more complex T(P) profile. The other challenge to this mystery is that stellar occultations are spatially constrained (i.e., map across a particular lat/long swath of Pluto surface at the time of event).

Are there waves in Pluto’s atmosphere? This is one proposition to explain the structures (spikes) seen in the Pluto occultation data. Tidal models they have built make predictions for large scale and small-scale structures. Also they can predict temperature profiles with altitude. Next steps are to apply this model to other occultation geometries. Richard French showed a comparison of a tidal model (Toigo et al 2010) against occultation data from an event on Aug 21, 2002 and they showed qualitative agreement.

Richard French’s predictions for New Horizons fly-by: When New Horizons provides a true frost pattern, they can input this into their models and generate large-scale and small-scale structures for comparison with actual New Horizons atmosphere measurements. Their tidal models do generate regionally variable, latitude dependent thermal changes. If this is what New Horizons observers, their model can help constrain parameters.

Bruno Sicardy (Observatoire de Paris, France) next took us on a rich tour of “Pluto’s Atmospheric Pressure From Stellar Occultations: 2002-2012.”

Pluto Charon Dual Occultation

There was a dual Pluto & Charon occultation event on 4 June 2011. Pluto and Charon each pass in front of the star (at different times). Look at curve shapes. Charon’s curve sharply drops, indicative of no atmosphere, unlike Pluto’s curve, which has not-as-steep ingress/egress that indicates the presence of an atmosphere.

Using the light curve data, Sicardy and his team use a temperature vs. altitude model to fit the light curve depth, width and ingress/egress slope. Then with the temperature, they can derive a pressure. He presented results from the most recent Pluto occultation that was observed May 4, 2013. Good data and good fit. Next were shown the derived pressure (at 1215km) for occultation events observed from 1988 to 2013.

Pluto's Atmosphere 1988 to 2013

Occultation results show the Pluto atmosphere is increasing over the past few years. There is some notable evolution and implies a regular expansion. But a question from the audience stressed caution as we could be seeing just the northern pole facing the Sun with that contributing to the expansion but it could be a localized phenomena.

Bruno Sicardy’s predictions for New Horizons fly-by: Atmosphere will be present for the fly-by.

Michael Person (MIT) next described “Trends in Pluto’s Atmosphere From Stellar Occultations.” He started his talk with the advantages of occultation measurements:  you get spatial resolution (~1 km at Pluto) with direct measurements of atmospheres (temperature, pressure, number profiles). MIT has collected data sets from 1988 through 2013. Their group tends to separate the upper vs. lower atmosphere when they fit their data. He next showed a light curve comparison over. Are we seeing a gradually decrease lower atmosphere slope? Is there a gradual lowering of the separation boundary?

“Haze or No Haze? That is the question.” Best evidence of haze is from the occultation event of 2002, where there is a distinct change in brightness as a function of wavelength (Elliot et al 2003).  Attempt to look for haze in the 2011 occultation event with SOFIA in three bands was not successful. The main question is why does the haze come and go, and what is causing it?

What Mike Person is looking forward to: New Horizons will finally provide the size of Pluto! Knowing where the Pluto surface really is, or equivalently, the size of Pluto, is a key data point, as all these interpretations of occultation light curves and interpretations to atmosphere assumes a Pluto size.

Alex Dias de Oliveira (Observatoire de Paris, France).“Pluto’s Atmosphere from Jul 18, 2012 stellar occultation.” This is his PhD work and he provided an updated status of the steps taken from prediction of the event, the observation data collected, various calibration items, and first attempts to invert the light curve to get a temperature profile. He observed this Pluto occultation event with the ESO VLT (8m telescope in Chile) with the NACO instrument in the H band (1.65 microns). Comparison with the June 12, 2006 AAT event showed that spikes seen in the light curves were repeated in the July 18, 2012 event he observed wit the VLT in Chile.

Cathy Olkin (SwRI) presented results from “The May 4th, 2013 Stellar Occultation by Pluto and Implications for Pluto Atmosphere in 2015.” This was an event where Pluto passed in front of a R=14.4 mag star with a slow shadow velocity of 10.6 km/s. The event was observed from the southern hemisphere, from Cerro Tololo in Chile.

Erika Barth (SwRI). “Is Methane Supersaturation Consistent with the Presence of Haze Particles in Pluto’s Atmosphere?” She asked the question: If you put haze particles into Pluto’s atmosphere how do they interact with the methane in Pluto’s atmosphere?” She developed a model to ingest haze particles into a supersaturated environment and this predicts the growth of clouds and condensation of methane. Then when methane condenses out, that reduces the amount of observable methane. Her model requires the existence of a troposphere (which we learned earlier in Emmanuel Lellouch’s talk today that there is no evidence for this, but its existence could explain some phenomena, some observed to date, other predicted) and also predicts a thick troposphere as well. She created a Pluto version of CARMA, the Community Aerosol and Radiation Model for Atmospheres.

Jason Cook (SwRI) next spoke about his “Analysis of High Resolution Spectra of Pluto: A Search for Cold Gaseous Methane Layer, and Spatial Variation in Methane Column Abundance.” Occultations have told us that Pluto’s upper atmosphere (above 1195 km) is pretty warm (100 K). But 2.15 micron N2 ice measurements of Pluto’s surface tells us the surface is ~40 K. So this implies there needs to be a cold-layer in the atmosphere. To investigate a search for this “cold layer of air” they took NIR (near infrared) spectra with NIRSPEC on Keck with R=35,000 in 2011. They need to move to a two-temperature model to help constrain the observed data (i.e. measured methane line depths from the high-res NIR spectra), but the hot/cold ratio of the two temperatures is an unresolved topic (pun intended).

They also took spectra of Pluto over several nights to probe the different longitudes of Pluto (Pluto has a rotational period of 6.4 days) and they got a fairly consistent number except near 180 deg longitude where gaseous CH4 was not easily detected. They would like more data to probe this temporal measurement.

Methane Spectra on Pluto

Selection of high-resolution NIR spectra of Pluto obtained over several days. This series probes a range of Pluto rotations and show how methane lines (Q-branch) vary.

Eliot Young (SwRI) spoke about “Evidence for Recent Change in Pluto’s Haze Abundance.” Hazes have been observed on Titan (photolysis products from higher up in the atmosphere) and Triton (condensates from surface). The August 21, 2002 occultation showed evidence for haze (change in brightness with color, Elliot et al 2003), but 2007 (0.51 & 0.76 micron) and June & July 2011 occultation events in different bands (I & K bands) showed no change in color.

Occultations can only probe down to a certain depth, so they are limited. We don’t really how close you got to the Pluto surface. If you have a special case where you can have a central flash or sets of flash spikes, you can derive more information. By applying a new technique on the 2007 Mt John light curves, he proposed they can determine amount of haze by evaluating the attenuation in those parts of the light curve.

Central Flash Description:  A central-flash occultation is visible when the observer is located near the center of the shadow path of the object. It is here where the atmosphere near the edges of the occulting body (for Pluto occultations, this is Pluto) refracts extra star light (from the background star) directly opposite from the star, forming a “brightening” in the middle of the deep light curve.

Mark Gurwell (Harvard CfA) provided a talk entitled “Atmosphere CO on Pluto: Limits from Millimeter-Wave Spectroscopy.” Carbon monoxide (CO) is expected based upon the presence as an ice on its surface. The first direct detection of CO was done in the NIR with the VLT (Lellouch et al 2011). Then JCMT (Greaves et al 2011) revealed a CO(2-1) line in the submillimeter, but this line had not been there a few years back, leaving a mystery. There is still mystery in fitting the CO abundance based on the measured submillimeter width and strength of this line. He did show that Pluto had been in the fore-ground of a galactic emission during the JCMT observations. He supposes that they had contamination. They did their own observations using the SMA sub-millimeter telescope multiple times and did not detect the CO(2-1) line in the spectra (they have upper limits). So he is excited about using the ALMA array that has 30-50x SMA sensitivity to really address the CO, nitriles and isotopes.

And the final talk of the morning Atmosphere session just could not leave Charon out of it.

Alan Stern (SwRI) “Cometary Impact Produce Transient Atmospheres on Charon.” Most scientists have come to accept that Charon does not have an atmosphere (see earlier posting in Bruno Sicardy’s talk showing the dual occultation event for Pluto and Charon in Jun 2011.) But he postulates what about impacts? Coming from the Kuiper Belt, impactors (assuming cometary-level amounts of volatiles) could provide volatiles to the surface to Charon and therefore creating a “nanobar” atmosphere on Charon. Similar events could lead to atmospheres on Kuiper Belt objects. Their modeling (Trafton & Stern 2008) predicts presence of N2, CO, Ar, CH4, with CO dominating after impacts, and N2 being the dominate species (in terms of amount).

Predictions for New Horizons. Duty cycle would be short lived so it will be rare if New Horizons catches this event. However, with smaller impactor sizes, there could be a possibility that those events could have occurred within the “photoionization time” (before the molecule breaks down or escapes) or resulting implanted molecules by the time New Horizons gets there. Alan Stern coyly stated, “could be as much as a 25% chance” to see an nano-bar atmosphere on Charon.

A good question regarding surface volatiles that are revealed by impacts got the crowd excited. After all, when you describe an atmosphere you can categorize things as sources and sinks. Sources bring material to the system and here they could be not only the KBO impactor but also the materials that are revealed from the impacted-body after the impact.

On July 14, 2015 New Horizons will be doing a very sensitive experiment via the observations of the Charon occultation (Charon passing in front of our Sun as viewed from New Horizons).

Charon may indeed hold a few surprises of her own!

Pluto’s uppermost atmosphere. How big is it?

This is a blog series about talks presented that Pluto Science Conference, held July 22-26, 2013 in Laurel, MD.

Darrell Strobel (JHU) next took us through a study about  “Pluto’s Atmosphere: Escape and the Relationship to Density and Thermal Structure.”

But first, what hydrodynamic escape discussion could be complete without a few equations….

Atmosphere Escape Equations

Yes, this is what an atmospheric modeler solves for. He/she solves numerous energy-balance, energy-transport, etc. equations to derive properties for making an atmosphere.

The Hydrodynamic escape rate is a key output from these numerical models for Pluto, with predictions in the range of 1.5-6.7 x 1027 particles/s. The basic problem with computing hydrodynamic escape is due to the presence of a gravity well that these molecules need to escape from. Essentially, you need an additional energy input (such as thermal) to drive the escape process.

Some other key terminology: “The exosphere is a thin, atmosphere-like volume surrounding a planetary body where molecules are gravitationally bound to that body, but where the density is too low for them to behave as a gas by colliding with each other.” (Wikipedia) It is the uppermost layer where the atmosphere thins out and merges with interplanetary space. The exobase is the lower boundary of the exosphere, defined as the altitude at which the atmosphere becomes collisionless.  Atmospheres can lose atoms from stratosphere, especially low-mass ones, because they exceed the escape velocity (Ve= (2GM/ R)½). This is known as (Jeans escape or Thermal Escape). The Jeans parameter (lambda) is a measure of how efficient the loss mechanism is. Larger lambda values implies less loss (smaller escape rates).

Models by different groups predict Pluto’s exobase between 5 and 10 Pluto radii. Assuming Pluto radius of 1200 km, Pluto’s exobase is in the 6000-12,000 km range. New Horizons’ nominal trajectory will bring the spacecraft to within ~10,000 km of Pluto’s surface and ignoring the slight fact that there are uncertainties in deriving Pluto’s size in the 20-100 km range and ignoring whether you determine a planet size by including or excluding the atmosphere, there is a possibility New Horizons could be flying through Pluto’s exosphere. Such an extended atmosphere could be affected by Charon and could affect Pluto’s interaction with the solar wind at the New Horizon encounter, as measured by New Horizons instruments PEPSSI and SWAP. (For more talk summaries about solar wind, see later blog entry).

A plot of temperature in Kelvin (x axis) vs. altitude in km (y axis) is a typical output of this type of model. Below is a particular plot shows the effect of adiabatic cooling, which Darrel Strobel stressed, is a key component that cannot be ignored. Another key output from these models is the computation of number density (N2 molecules/cm2/s) as a function of altitude.

Temperature Profile with Altitude

Temperature profile with altitude for models with (blue) and without (red) adiabatic cooling. The surface is at 40 K (which is from observation evidence) and upper atmosphere temperatures are in the 100s of Kelvin (supported by NIR spectral observations of methane). The two models predict wildly different temperatures at high altitudes depending on whether cooling is occurring.

Darrel Strobel’s predictions for New Horizons fly-by: Escape rate 3.5×1027 N2/s, exobase at 8 Rpluto ~9600 km, Jeans Parameter Lambda ~ 5.