Watch NASA TV for Cygnus Arrival and Capture at Station

The Cygnus space freighter is pictured in the grips of the Canadarm2 robotic arm in February of 2020 during Expedition 62.
The Cygnus space freighter is pictured in the grips of the Canadarm2 robotic arm in February of 2020 during Expedition 62.

A Northrop Grumman cargo spacecraft carrying almost 8,000 pounds of science and research investigations, supplies, and hardware is set to arrive to the International Space Station today at 4:40 a.m. EST. The uncrewed Cygnus spacecraft launched at 12:36 p.m. on Saturday, Feb. 20, on an Antares rocket from NASA’s Wallops Flight Facility in Virginia.

The company’s Cygnus cargo spacecraft for its 15th commercial resupply services mission was named after NASA mathematician Katherine Johnson, a Black woman who time and again broke through barriers of gender and race.

Japanese Aerospace Exploration Agency astronaut Soichi Noguchi will capture Cygnus, and NASA astronaut Michael Hopkins will be acting as a backup. After capture, the spacecraft will be installed on the Unity module’s Earth-facing port.

NASA Television coverage of capture has begun. Watch live on the agency’s website or on the NASA app.

Learn more about space station activities by following @space_station and @ISS_Research on Twitter as well as the ISS Facebook and ISS Instagram accounts.

Cygnus Solar Arrays Deployed; Launch Blog Coverage Concludes

The solar arrays have successfully deployed on Northrop Grumman’s Cygnus cargo spacecraft that is on its way to deliver approximately 8,000 pounds of scientific investigations, cargo, and supplies to the International Space Station after launching at 12:36 p.m. EST Saturday from NASA’s Wallops Flight Facility on Wallops Island in Virginia.

Post-launch press release

More Northrop Grumman CRS-15 mission imagery from NASA on Flickr

File photo of a Northrop Grumman Cygnus spacecraft, with solar arrays deployed, approaching the International Space Station, Oct. 5, 2020. Credit: NASA

Coverage of the spacecraft’s approach and arrival to the orbiting laboratory will begin Monday, Feb. 22, at 3:00 a.m. EST on NASA Television, the NASA app, and the agency’s website. Arrival at station is expected in the 4 a.m. hour, EST.

Japan Aerospace Exploration Agency astronaut Soichi Noguchi will capture Cygnus, and NASA astronaut Michael Hopkins will be acting as a backup. After capture, the spacecraft will be installed on the Unity module’s Earth-facing port. NASA TV coverage of the spacecraft’s installation will begin Monday, Feb. 22, at 6 a.m. EST.

This delivery is Northrop Grumman’s 15th contracted cargo flight to the space station and will support dozens of new and existing investigations.

Included aboard Cygnus for delivery to the space station:

A life support upgrade

The Environmental Control and Life Support System (ECLSS) is a crucial element of regenerative life support hardware that provides clean air and water to the space station crew. Current systems enable recovery of about 93% of the water and water vapor on the station. The system will get an upgrade thanks to the Exploration ECLSS: Brine Processor System. This investigation demonstrates technology to recover additional water from the Urine Processor Assembly. The brine processor’s dual membrane bladder allows water vapor to pass through while filtering out the brine and the majority of contaminants. Long-duration crewed exploration missions require about 98% water recovery, and this technology demonstration in brine processing will help achieve this goal. This Brine Processor System plans to close this gap for the urine waste stream of the space station.

A new vision

Millions of people on Earth suffer from retinal degenerative diseases. These conditions have no cure, although treatments can slow their progression. Artificial retinas or retinal implants may provide a way to restore meaningful vision for those affected. In 2018, startup LambdaVision sent their first experiment to the space station to determine whether the process used to create artificial retinal implants by forming a thin film one layer at a time may work better in microgravity.

Protein-Based Artificial Retina Manufacturing builds on the first project, evaluating a manufacturing system that uses a light-activated protein to replace the function of damaged cells in the eye. This information may help LambdaVision uncover whether microgravity optimizes production of these retinas, and could assist people back on Earth.

I dream of space

Strapped inside sleeping bags, astronauts often report getting a better night’s sleep during their stays aboard the space station than when lying on a bed on Earth. The ESA (European Space Agency) Dreams experiment will provide a quantitative look at these astronaut sleep reports. When crew members get ready for bed, they will add another step: donning a sleep monitoring headband. The investigation serves as a technology demonstration of the Dry-EEG Headband in microgravity while also monitoring astronaut sleep quality during a long-duration mission. Raw data will be available to scientists for analysis, and the crew can input direct feedback on their sleep via an application on a tablet. Sleep is central to human health, so a better understanding of sleep in space provides a more comprehensive picture of human health in microgravity.

Preparing for the Moon

The International Space Station serves as a testing ground for technologies we plan to use on future Artemis missions to the Moon. The NASA A-HoSS investigation puts to the test tools planned for use on the crewed Artemis II mission that will orbit the Moon. Built as the primary radiation detection system for the Orion spacecraft, the Hybrid Electronic Radiation Assessor (HERA) was modified for operation on the space station. Verifying that HERA can operate without error for 30 days validates the system for crewed Artemis mission operations. A related investigation, ISS HERA, flew in 2019 aboard the space station. ISS HERA provided data and operational feedback in preparation for the Orion spacecraft’s uncrewed Artemis I mission that will launch in 2021.

U.S. Cargo Craft Deploys Solar Arrays, On its Way to Station

Northrop Grumman's Antares rocket blasted off with the Cygnus space freighter today at 12:36 p.m. EST from Virginia. Credit: NASA Wallops/Allison Stancil
Northrop Grumman’s Antares rocket blasts off with the Cygnus space freighter  from Virginia. Credit: NASA Wallops/Allison Stancil

The solar arrays have successfully deployed on Northrop Grumman’s Cygnus cargo spacecraft that is on its way to deliver approximately 8,000 pounds of scientific investigations, cargo, and supplies to the International Space Station after launching at 12:36 p.m. EST Saturday from NASA’s Wallops Flight Facility on Wallops Island in Virginia.

Coverage of the spacecraft’s approach and arrival to the orbiting laboratory will begin Monday, Feb. 22, at 3:00 a.m. EST on NASA Television, the NASA app, and the agency’s website.

Japanese Aerospace Exploration Agency astronaut Soichi Noguchi will capture Cygnus, and NASA astronaut Michael Hopkins will be acting as a backup. After capture, the spacecraft will be installed on the Unity module’s Earth-facing port. NASA TV coverage of the spacecraft’s installation will begin Monday, Feb. 22, at 6:00 a.m. EST.

This delivery is Northrop Grumman’s 15th contracted cargo flight to the space station and will support dozens of new and existing investigations.

Included aboard Cygnus for delivery to the space station are:

A life support upgrade

The Environmental Control and Life Support System (ECLSS) is a crucial element of regenerative life support hardware that provides clean air and water to the space station crew. Current systems enable recovery of about 93% of the water and water vapor on the station. The system will get an upgrade thanks to the Exploration ECLSS: Brine Processor System. This investigation demonstrates technology to recover additional water from the Urine Processor Assembly. The brine processor’s dual membrane bladder allows water vapor to pass through while filtering out the brine and the majority of contaminants. Long-duration crewed exploration missions require about 98% water recovery, and this technology demonstration in brine processing will help achieve this goal. This Brine Processor System plans to close this gap for the urine waste stream of the space station.

A new vision

Millions of people on Earth suffer from retinal degenerative diseases. These conditions have no cure, although treatments can slow their progression. Artificial retinas or retinal implants may provide a way to restore meaningful vision for those affected. In 2018, startup LambdaVision sent their first experiment to the space station to determine whether the process used to create artificial retinal implants by forming a thin film one layer at a time may work better in microgravity.

Protein-Based Artificial Retina Manufacturing builds on the first project, evaluating a manufacturing system that uses a light-activated protein to replace the function of damaged cells in the eye. This information may help LambdaVision uncover whether microgravity optimizes production of these retinas, and could assist people back on Earth.

I dream of space

Strapped inside sleeping bags, astronauts often report getting a better night’s sleep during their stays aboard the space station than when lying on a bed on Earth. The ESA (European Space Agency) Dreams experiment will provide a quantitative look at these astronaut sleep reports. When crew members get ready for bed, they will add another step: donning a sleep monitoring headband. The investigation serves as a technology demonstration of the Dry-EEG Headband in microgravity while also monitoring astronaut sleep quality during a long-duration mission. Raw data will be available to scientists for analysis, and the crew can input direct feedback on their sleep via an application on a tablet. Sleep is central to human health, so a better understanding of sleep in space provides a more comprehensive picture of human health in microgravity.

Preparing for the Moon

The International Space Station serves as a testing ground for technologies we plan to use on future Artemis missions to the Moon. The NASA A-HoSS investigation puts to the test tools planned for use on the crewed Artemis II mission that will orbit the Moon. Built as the primary radiation detection system for the Orion spacecraft, the Hybrid Electronic Radiation Assessor (HERA) was modified for operation on the space station. Verifying that HERA can operate without error for 30 days validates the system for crewed Artemis mission operations. A related investigation, ISS HERA, flew in 2019 aboard the space station. ISS HERA provided data and operational feedback in preparation for the Orion spacecraft’s uncrewed Artemis I mission that will launch in 2021.

First-Look Launch Photos

The following NASA photographs show the launch of Northrop Grumman’s Antares rocket carrying the S.S. Katherine Johnson Cygnus cargo spacecraft, which lifted off at 12:36:49 p.m. EST from Virginia Space’s Mid-Atlantic Regional Space Port Pad-0A at NASA’s Wallops Flight Facility in Virginia.

The Northrop Grumman Antares rocket, with Cygnus resupply spacecraft aboard, launches from Pad-0A, Saturday, Feb. 20, 2021, at NASA’s Wallops Flight Facility in Virginia. Northrop Grumman’s 15th contracted cargo resupply mission for NASA to the International Space Station will deliver about 8,000 pounds of science and research, crew supplies, and vehicle hardware to the orbital laboratory and its crew. Photo Credit: (NASA’s Wallops Flight Facility/Patrick Black)
Credit: (NASA Wallops/Allison Stancil)
Credit: (NASA Wallops/Allison Stancil)
Credit: (NASA Wallops/Allison Stancil)
Credit: (NASA Wallops/Allison Stancil)
Credit: (NASA Wallops/Terry Zaperach)
Credit: (NASA Wallops/Terry Zaperach)
Credit: (NASA Wallops/Terry Zaperach)
Credit: (NASA’s Wallops Flight Facility/Patrick Black)
Credit: (NASA’s Wallops Flight Facility/Patrick Black)
Credit: (NASA’s Wallops Flight Facility/Patrick Black)

Cygnus is on its way to the International Space Station with about 8,000 pounds of cargo.

More mission imagery on Flickr

Cygnus Spaceship Lifts Off to Resupply Station on Monday

The Cygnus cargo craft launches atop the Antares rocket on time from NASA Wallops Flight Facility in Virginia.
The Cygnus cargo craft launches atop the Antares rocket on time from NASA Wallops Flight Facility in Virginia.

Northrop Grumman’s Antares rocket carrying the Cygnus cargo spacecraft lifted off at 12:36 p.m. EST from NASA’s Wallops Flight Facility in Virginia and is on its way to the International Space Station with approximately 8,000 pounds of research, crew supplies, and hardware.

Commands will be given at about 3:20 p.m. EST to deploy the spacecraft’s solar arrays, which is expected to be complete shortly before 4 p.m.  Capture and installation is expected to take place Monday, Feb. 22, with grapple by the robotic arm expected at approximately 4:40 a.m. EST.

For more information about the International Space Station, visit www.nasa.gov/station.

Cygnus in Orbit; TV Coverage Wraps; Solar Array Deployment To Come

Northrop Grumman’s Antares rocket carrying the S.S. Katherine Johnson Cygnus cargo spacecraft lifted off at 12:36:49 p.m. EST from Virginia Space’s Mid-Atlantic Regional Space Port Pad-0A at NASA’s Wallops Flight Facility in Virginia.

The Northrop Grumman Antares rocket, with Cygnus resupply spacecraft aboard, launches from Pad-0A, Saturday, Feb. 20, 2021, at NASA’s Wallops Flight Facility in Virginia. Northrop Grumman’s 15th contracted cargo resupply mission for NASA to the International Space Station will deliver about 8,000 pounds of science and research, crew supplies, and vehicle hardware to the orbital laboratory and its crew. Photo Credit: (NASA’s Wallops Flight Facility/Patrick Black)

Cygnus is on its way to the International Space Station with about 8,000 pounds of cargo.

Live launch coverage on NASA TV has wrapped. Commands will be given at about 3:20 p.m. EST to deploy the spacecraft’s solar arrays, which is expected to be complete shortly before 4 p.m.

Liftoff of Northrop Grumman CRS-15!

The International Space Station-bound Cygnus spacecraft aboard Northrop Grumman’s Antares rocket has lifted off from the Mid-Atlantic Regional Spaceport’s Pad-0A at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore.

The Northrop Grumman Antares rocket, with Cygnus resupply spacecraft aboard, launches from Pad-0A, Saturday, Feb. 20, 2021, at NASA’s Wallops Flight Facility in Virginia. Northrop Grumman’s 15th contracted cargo resupply mission for NASA to the International Space Station will deliver about 8,000 pounds of science and research, crew supplies, and vehicle hardware to the orbital laboratory and its crew. Photo Credit: (NASA’s Wallops Flight Facility/Patrick Black)