United Launch Alliance’s Atlas V rocket that will launch Boeing’s CST-100 Starliner to the International Space Station for NASA’s Commercial Crew Program was modified specifically for the agency’s Orbital Flight Test-2. This rocket configuration does not include a payload fairing. Instead, the Starliner’s own protective surfaces will take the place of the fairing to protect the uncrewed spacecraft during launch and ascent. The rocket has two solid rocket boosters (SRBs) and a dual-engine Centaur upper stage. Starliner is attached to the Atlas V using a launch vehicle adapter, which includes an aeroskirt to reduce the aerodynamic loads on the vehicle.
The Atlas V booster is 12.5 feet in diameter and 106.5 feet in length. The booster’s propulsion is provided by the RD-180 engine system, which delivers 860,200 pounds of thrust at sea level. The SRBs generate the additional power required at liftoff, with each providing 348,500 pounds of thrust.
The Centaur second stage is 10 feet in diameter and 41.5 feet in length. For this configuration, the Centaur is configured with dual RL10A-4-2 engines, each producing 22,600 pounds of thrust. The cryogenic tanks are insulated with a combination of helium-purge blankets, radiation shields, and spray-on foam insulation. The Centaur includes an Emergency Detection System that monitors for critical hazards. This system will provide critical in-flight data which supports jettison of the ascent cover and initiates CST-100 spacecraft separation.
On May 18, 2022, Boeing’s CST-100 Starliner spacecraft and the United Launch Alliance Atlas V rocket rolled out from the Vertical Integration Facility to the launch pad at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida. Photo credit: NASA/Kim Shiflett
NASA’s Boeing Orbital Flight Test-2 will test the end-to-end capabilities of the company’s CST-100 Starliner spacecraft from launch to docking to a return to Earth in the desert of the western United States. The flight test will provide valuable data toward NASA certifying Boeing’s crew transportation system for regular crewed flights to and from the International Space Station. OFT-2 will build on the objectives achieved during Starliner’s initial flight test, including:
In-orbit operation of the avionics, docking system, communications and telemetry systems, environmental control systems, solar arrays and electrical power systems and propulsion systems;
Performance of the guidance, navigation and control systems of the Starliner and Atlas V through ascent, on-orbit, and entry;
Acoustic and vibration levels, and loads across the Starliner exterior and interior;
Launch escape trigger monitoring; and
Performance of the Starliner system end-to-end mission operations.
These objectives are intended to demonstrate all of Starliner’s systems and capabilities except for those requiring a human onboard to test.
For this flight, Starliner will carry more than 500 pounds of NASA cargo and crew supplies to the space station. After a successful docking, the spacecraft will spend five to 10 days aboard the orbiting laboratory before returning to Earth. The spacecraft will return with nearly 600 pounds of NASA cargo, including reusable Nitrogen Oxygen Recharge System tanks that provide breathable air to station crew members.
A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft aboard is seen after being rolled out of the Vertical Integration Facility to the launch pad at Space Launch Complex 41 ahead of the Orbital Flight Test-2 (OFT-2) mission, Wednesday, May 18, 2022 at Cape Canaveral Space Force Station in Florida. Photo Credit: NASA/Joel Kowsky
Good afternoon from Kennedy Space Center in Florida, and welcome to live launch coverage of NASA’s Boeing Orbital Flight Test-2 (OFT-2) to the International Space Station, launching in a little over an hour. Boeing’s CST-100 Starliner spacecraft sits atop a United Launch Alliance Atlas V rocket poised on the launch pad ready to go at nearby Space Launch Complex-41 on Cape Canaveral Space Force Station.
OFT-2 is an uncrewed flight test of the company’s Starliner spacecraft for NASA’s Commercial Crew Program. Liftoff is scheduled for 6:54 p.m. EDT during an instantaneous launch window.
The countdown is currently proceeding according to schedule. Fueling of the Atlas V rocket began a little after noon EDT today. The first stage booster’s RD-180 engine, containing two thrust chambers, was fueled with Rocket Propellant-1, a highly purified kerosene. The Centaur second stage was fueled with liquid hydrogen and liquid oxygen. Fueling of the rocket was completed about two hours later.
Meteorologists with the U.S. Air Force 45th Weather Squadron continue to predict an 80% chance of favorable weather for launch this afternoon. The primary concerns for launch day are the cumulus and anvil cloud rules violations during the instantaneous launch window.
On May 18, 2022, Boeing’s CST-100 Starliner spacecraft and the United Launch Alliance Atlas V rocket roll out from the Vertical Integration Facility to the launch pad at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida. Photo credit: NASA/Kim Shiflett
This morning, Wednesday, May 18, Boeing’s CST-100 Starliner spacecraft and the United Launch Alliance (ULA) Atlas V rocket rolled out of the ULA Vertical Integration Facility to the launch pad at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida ahead of the uncrewed launch of NASA’s Boeing Orbital Flight Test-2 (OFT-2) to the International Space Station. Liftoff is scheduled for 6:54 p.m. EDT on Thursday, May 19.
For a launch Thursday, meteorologists with the U.S. Space Force 45th Weather Squadron continue to predict a 70% chance of favorable weather. The primary weather concerns for launch day are the cumulus and anvil cloud rules violations during the instantaneous launch window.
NASA leaders will update members of the news media on OFT-2 during a briefing on Wednesday, May 18, at 1 p.m. The briefing will air live on NASA TV, the NASA app, and the agency’s website. Participants include:
Bob Cabana, NASA associate administrator
Janet Petro, director, NASA’s Kennedy Space Center
Kathryn Lueders, associate administrator, Space Operations Mission Directorate at NASA
NASA astronaut Suni Williams
NASA astronaut Butch Wilmore
NASA astronaut Mike Fincke
NASA TV will cover the upcoming prelaunch, launch, and docking activities. Mission coverage is as follows (all times Eastern):
Thursday, May 19
6 p.m. – NASA TV launch coverage begins for a targeted 6:54 p.m. liftoff. NASA TV will have continuous coverage through Starliner orbital insertion.
9 p.m. (approximately) – Postlaunch news conference on NASA TV
Friday, May 20
3:30 p.m. – NASA TV rendezvous and docking coverage begins.
7:10 p.m. (approximately) – Docking
Friday, May 21
11:30 a.m. – NASA TV hatch opening coverage begins
11:45 a.m. – (approximately) Hatch opening and welcoming remarks
Boeing’s CST-100 Starliner spacecraft rolls out from the company’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on May 4, 2022, on its way to Space Launch Complex-41 at Cape Canaveral Space Force Station. Photo credit: NASA/Glenn Benson
On Wednesday, May 4, Boeing’s CST-100 Starliner was joined with the rocket that will launch the spacecraft on its way to the International Space Station on an uncrewed flight test for NASA’s Commercial Crew Program.
During the operation, Starliner rolled out of the Commercial Crew and Cargo Processing Facility (C3PF) at NASA’s Kennedy Space Center in Florida and made its way to Space Launch Complex-41 (SLC-41) at Cape Canaveral Space Force Station in preparation for the company’s second uncrewed Orbital Flight Test (OFT-2)
United Launch Alliance’s Atlas V rocket and Boeing’s CST-100 Starliner spacecraft are fully assembled in preparation for an integrated systems test. Photo credit: United Launch Alliance
Starliner was raised and carefully placed onto the rocket and now is fully assembled and ready for an integrated systems test, a tip-to-tail electrical check of the 172-foot-tall Atlas V and Starliner stack.
OFT-2 is scheduled to launch Thursday, May 19, to demonstrate the system’s human transportation capabilities.
About 24 hours after launch, Starliner will rendezvous and dock to the space station and then return to Earth five to 10 days later. The test is the last flight before the Starliner system launches American astronauts on the Crew Flight Test (CFT) to the microgravity laboratory – the spacecraft’s first flight test with crew on board. Potential launch windows for CFT are under review and will be determined after a safe and successful OFT-2.
More details about the mission and NASA’s commercial crew program can be found by following the commercial crew blog, @commercial_crew on Twitter, and commercial crew on Facebook.
A new service module was mated to a Boeing CST-100 Starliner crew module to form a complete spacecraft on March 12, 2022, in Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida. Starliner will launch on a United Launch Alliance Atlas V rocket for Boeing’s second uncrewed Orbital Flight Test-2 (OFT-2) for NASA’s Commercial Crew Program. Photo credit: Boeing
NASA and Boeing will hold a joint media teleconference at noon EDT on Tuesday, May 3, to discuss the agency’s Boeing Orbital Flight Test (OFT-2) mission and provide an update on spacecraft readiness.
The teleconference includes the following participants:
Kathryn Lueders, associate administrator, Space Operations Mission Directorate, NASA Headquarters
Steve Stich, manager, Commercial Crew Program, NASA’s Kennedy Space Center in Florida
Joel Montalbano, manager, International Space Station Program, NASA’s Johnson Space Center in Houston
Michelle Parker, vice president and deputy general manager, Space and Launch, Boeing
Mark Nappi, vice president and program manager, CST-100 Starliner, Boeing
OFT-2 is scheduled to launch on Thursday, May 19, from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida. Boeing’s uncrewed CST-100 Starliner will launch atop a United Launch Alliance Atlas V rocket for its flight test to the International Space Station as part of NASA’s Commercial Crew Program.
Starliner is expected to arrive at the space station for docking about 24 hours later with more than 500 pounds of NASA cargo and crew supplies. After a successful docking, Starliner will spend five to 10 days aboard the orbiting laboratory before returning to Earth in the western United States. The spacecraft will return with nearly 600 pounds of cargo, including reusable Nitrogen Oxygen Recharge System (NORS) tanks that provide breathable air to station crew members.
Media wishing to participate in the OFT-2 mission overview news teleconference must RSVP by 11 a.m., Tuesday, May 3, by emailing the Kennedy newsroom at ksc-newsroom@mail.nasa.gov.
Starliner technicians work on the Orbital Flight Test-2 spacecraft in the high bay of Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on Jan. 13, 2022.
NASA and Boeing continue making progress toward the agency’s upcoming Starliner Orbital Flight Test-2 (OFT-2) mission to the International Space Station as part of NASA’s Commercial Crew Program.
Teams recently completed offloading fuel from the OFT-2 spacecraft inside Starliner’s production factory at NASA’s Kennedy Space Center in Florida in preparation for separating and replacing the current service module (SM2) from the crew module.
“The Starliner team and successful completion of the spacecraft’s development phase are critical to sustaining International Space Station operations through 2030,” said Steve Stich, manager, NASA Commercial Crew Program. “The team’s dedication to developing effective remedies and corrective action after our first OFT-2 launch attempt demonstrates their continued commitment to safely flying NASA crews for years to come.”
In December, Boeing decided to move up service modules currently in production for its upcoming uncrewed and crewed flight tests. The service module originally planned for the Crew Flight Test (CFT) is now being used for OFT-2, and the service module originally planned for Starliner’s first post-certification mission, Starliner-1, now will be used for CFT.
With fuel offload complete, the spacecraft was moved out of the hazardous processing area and into the production factory high bay.
“Because this is not an operation that we normally perform, our team took the time to fully coordinate and assess the proper spacecraft and ground support equipment configurations, and then execute to plan to ensure the safety of our team,” said John Vollmer, vice president and program manager, Boeing’s Commercial Crew Program.
Once separated in the coming weeks from the OFT-2 crew module, SM2 will be sent to NASA’s White Sands Test Facility in New Mexico for additional testing related to the issue affecting the spacecraft’s oxidizer isolation valves.
The investigation into the valve issue continues to substantiate that the most probable cause is interaction of moisture with nitrogen tetroxide that permeates through the Teflon seal in the valve, leading to corrosion. Testing continues to fully understand how this occurrence affects the valves in various environments.
Tests include environmental seal evaluation and exposing valves, in a controlled setting, to temperatures and conditions similar to those the spacecraft experienced prior to the planned launch of OFT-2. The results of these tests will help in the ongoing development of remediation efforts to prevent similar issues on future service modules.
For example, the team designed a purging system that will be integrated into the spacecraft to protect the valves from potential exposure to moisture at the factory, launch complex, and launch pad.
Progress also continues with production of the new service module (SM4) that will go onto the OFT-2 crew module. That service module was recently moved from the low bay production area to the factory’s hazardous processing area for high pressure leak testing. Remaining tasks before mating this service module with the OFT-2 crew module include acceptance testing, final wire harness mating, installation of solar array panels, and final closeouts.
NASA and Boeing continue to work toward an opening in United Launch Alliance’s launch window availability in May for OFT-2. An actual launch date will be determined closer to spacecraft readiness, and with consideration of Eastern Range and International Space Station availability. Potential launch windows for CFT are under review and will be determined after a safe and successful OFT-2.
Boeing’s CST-100 Starliner spacecraft sits atop a United Launch Alliance Atlas V rocket on Cape Canaveral Space Force Station in Florida. Photo credit: Boeing
NASA and Boeing will hold a joint teleconference at 2:30 p.m. EDT Tuesday, Oct. 19, to update media on the company’s CST-100 Starliner spacecraft. Teams will discuss work on the oxidizer isolation valve issue that was discovered ahead of the planned uncrewed Orbital Flight Test-2 (OFT-2) mission to the International Space Station in August.
Participants in the briefing will be:
Steve Stich, manager of NASA’s Commercial Crew Program
John Vollmer, vice president and program manager, Boeing Commercial Crew Program
Michelle Parker, chief engineer, Boeing Space and Launch
To participate in the teleconference, media must contact ksc-newsroom@mail.nasa.gov by 1:30 p.m. Oct. 19 for the dial-in information.
The OFT-2 mission will launch Starliner on a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida. Starliner will dock to the space station before returning to land in the western United States about a week later as part of an end-to-end test flight to prove the system is ready to fly crew.
Boeing’s Starliner spacecraft returned Aug. 19, 2021, from the United Launch Alliance Vertical Integration Facility to the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida, where teams will work to diagnose and resolve a valve issue detected during the Aug. 3 launch attempt of NASA Boeing’s Orbital Flight Test-2. Photo credit: Boeing
Teams from Boeing and United Launch Alliance (ULA) safely returned the CST-100 Starliner to its production facility in Florida on Aug. 19 for continued work on the spacecraft’s service module propulsion system.
The Starliner Orbital Flight Test-2 spacecraft was removed from its Atlas V rocket inside the Vertical Integration Facility at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida and returned to the Commercial Crew and Cargo Processing Facility on NASA’s Kennedy Space Center.
The team now will perform propulsion system checkouts inside the factory’s hazardous processing area and determine the appropriate vehicle configuration for accessing and analyzing the system further. NASA and Boeing will recommend forward work as part of a formal process designed to aid in determining root cause and remediation steps.
In the weeks ahead, engineering teams from NASA and Boeing will work to diagnose and ultimately resolve a valve issue detected during the Aug. 3 countdown for NASA’s Boeing Orbital Flight Test-2, and resulted in the decision to postpone the launch destined for the International Space Station.
NASA, Boeing, and ULA will establish a new launch date once the issue is resolved.
Boeing engineers continue work at the United Launch Alliance Vertical Integration Facility on the Starliner propulsion system valves. Photo credit: Boeing
NASA and Boeing continued work over the weekend and Monday morning on the company’s CST-100 Starliner spacecraft service module propulsion system in preparation for the Orbital Flight Test-2 mission to the International Space Station.
Work progressed to restore functionality to several valves in the Starliner propulsion system that did not open as designed during the launch countdown for the Aug. 3 launch attempt. The valves connect to thrusters that enable abort and in-orbit maneuvering.
With the United Launch Alliance (ULA) Atlas V and Starliner in the Vertical Integration Facility (VIF) near Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida, engineering teams are able to power on Starliner allowing the vehicle to receive commands, and have direct access to the spacecraft for troubleshooting.
Inside the VIF, Boeing has been able to command seven of 13 valves open that previously were in the closed position. Test teams are applying mechanical, electrical and thermal techniques to prompt the valves to open, and are moving forward with a systematic plan to open the remainder of the affected valves, demonstrate repeatable system performance, and verify the root cause of the issue before returning Starliner to the launch pad for its Orbital Flight Test-2 mission.
Boeing also has completed physical inspections and chemical sampling on the exterior of a number of the affected valves, which indicated no signs of damage or external corrosion.
In the coming days, NASA and Boeing will continue work to bring all affected valves into the proper configuration. If all valve functionality can be restored and root cause identified, NASA will work with Boeing to determine a path to flight for the important uncrewed mission to the space station.
NASA, Boeing and ULA are assessing the potential for several launch opportunities with the earliest available in mid-August. Any launch date options would protect for the planetary window for the agency’s Lucy mission – the first-ever mission to explore Trojan asteroids.