Monthly Archives: June 2015

Crew Module Adapter Simulator Arrives to NASA Glenn’s Plum Brook Station for Testing

Posted on by .
Orion's crew module adapter simulator arrives to NASA Glenn's Plum Brook Station in Sandusky, Ohio.

Orion’s crew module adapter simulator arrives to NASA Glenn’s Plum Brook Station in Sandusky, Ohio.

Orion’s crew module adapter (CMA) simulator arrived at NASA Glenn’s Plum Brook Station in Sandusky, Ohio on June 22. The simulator was built at the agency’s Kennedy Space Center in Florida and moved to Plum Brook for Orion service module testing scheduled to begin later this year. At Plum Brook’s Space Power Facility, the CMA and the service module provided by ESA (European Space Agency) will be integrated and then undergo acoustics and mechanical vibration tests that simulate the noise and shaking the service module will endure when the spacecraft heads to space atop the Space Launch System rocket. The service module is a critical part of Orion and houses all the air, nitrogen and water for crews, in-space propulsion, and batteries and solar arrays to generate power.

NASA Continues Journey to Mars with LDSD, SLS Engine Tests

Posted on by .
Low-Density Supersonic Decelerator

Two members of the U.S. Navy’s Mobile Diving Salvage Unit (MDSU) 1 Explosive Ordnance Detachment work on recovering the test vehicle for NASA’s Low-Density Supersonic Decelerator (LDSD) project. The saucer-shaped LDSD craft splashed down at 11:49 a.m. HST (2:49 PDT/5:49 p.m. EDT) Monday, June 8, 2015, in the Pacific Ocean off the west coast of the Kauai, Hawaii, after a four-hour experimental flight test that investigated new technologies for landing future robotic and human Mars missions. Credit: U.S. Navy.

This week, engineers completed the second experimental test flight of NASA’s Low-Density Supersonic Decelerator (LDSD). During the flight, which took place June 8, the team tested two decelerator technologies that could enable larger payloads to land safely on the surface of Mars, and allow access to more of the planet’s surface by assisting landings at higher-altitude sites.  The technology is critical to enabling our journey to Mars. Read about the test here.

Meanwhile, NASA completed another test June 11 of the RS-25 engine that will power the Space Launch System (SLS) rocket with Orion atop it to space. This is the third firing of an RS-25 development engine on the A-1 test stand at the agency’s Stennis Space Center near Bay St. Louis, Mississippi. Four more test are planned for the current development engine.

New video animation also was released this week showing SLS launching Orion to deep space destinations. Check out the smoke and fire!

50 Years of Spacewalks, Mission Control Legacy Lay Foundation for Deep Space Missions

Posted on by .

Ed WhiteNASA recently celebrated the 50th anniversary of the first American spacewalk on June 3, 1965. On that day, supported by a mission control team in Houston, Ed White (shown above) exited his spacecraft during the Gemini 4 mission and spent more than 20 minutes in the void of space. Since this historic first, NASA astronauts have performed spacewalks, or extravehicular activity (EVA) in NASA-speak, on the Gemini, Apollo, Skylab, Space Shuttle and International Space Station programs. Astronauts have explored the lunar surface, completed 82 spacewalks outside of the space shuttle, and 187 spacewalks, to date, outside the International Space Station. A total of 166 hours of spacewalks were carried out to service the Hubble Space Telescope. Today, NASA is developing new advanced spacesuits for use by astronauts as they travel to new deep-space destinations on the journey to Mars.

Engineers and technicians at NASA’s Johnson Space Center in Houston continue to test the spacesuit astronauts will wear in the agency’s Orion spacecraft on trips to deep space. The Modified Advanced Crew Escape Suit is a closed-loop version of the launch and entry suits worn by space shuttle astronauts. In addition, a next-generation suit will incorporate a number of technology advances to shorten preparation time, improve safety and boost astronaut capabilities during spacewalks and surface activities.

Check out this video on the legacy of 50 years of spacewalk activities that paved the way for future missions.