NASA’s OSIRIS-REx Achieves Sample Mass Milestone

The curation team processing NASA’s asteroid Bennu sample has removed and collected 2.48 ounces (70.3 grams) of rocks and dust from the sampler hardware – surpassing the agency’s goal of bringing at least 60 grams to Earth.

And the good news is, there’s still more of NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) sample to collect.

The sample processed so far includes the rocks and dust found on the outside of the sampler head, as well as a portion of the bulk sample from inside the head, which was accessed through the head’s mylar flap. Additional material remaining inside the sampler head, called the Touch-and-Go Sample Acquisition Mechanism, or TAGSAM, is set for removal later, adding to the mass total.

In the last week, the team at NASA’s Johnson Space Center in Houston changed its approach to opening the TAGSAM head, which contained the bulk of the rocks and dust collected by the spacecraft in 2020. After multiple attempts at removal, the team discovered two of the 35 fasteners on the TAGSAM head could not be removed with the current tools approved for use in the OSIRIS-REx glovebox. The team has been working to develop and implement new approaches to extract the material inside the head, while continuing to keep the sample safe and pristine.

As a first step, the team successfully accessed some of the material by holding down the head’s mylar flap and removing the sample inside with tweezers or a scoop, depending on material size. The collection and containment of material through this method, combined with the earlier collection of material located outside the head, yielded a total mass exceeding the 60 grams required.

The team will spend the next few weeks developing and practicing a new procedure to remove the remaining asteroid sample from the TAGSAM sampler head while simultaneously processing the material that was collected this week. The OSIRIS-REx science team will also proceed with its plan to characterize the extracted material and begin analysis of the bulk sample obtained so far.

All curation work on the sample – and the TAGSAM head – is performed in a specialized glovebox under a flow of nitrogen to keep it from being exposed to Earth’s atmosphere, preserving the sample’s pristine state for subsequent scientific analysis. The tools for any proposed solution to extract the remaining material from the head must be able to fit inside the glovebox and not compromise the scientific integrity of the collection, and any procedures must be consistent with the clean room’s standards.

While the procedure to access the final portion of the material is being developed, the team has removed the TAGSAM head from the active flow of nitrogen in the glovebox and stored it in its transfer container, sealed with an O-ring and surrounded by a sealed Teflon bag to make sure the sample is kept safe in a stable, nitrogen-rich, environment.

Brian May Guest Blog: Stereoscopic Images from NASA’s OSIRIS-REx Sampling Head

Making stereoscopic images of asteroid Bennu was not part of the brief of NASA’s OSIRIS-REx mission; but we civilians, Claudia Manzoni and myself, were invited by mission principal investigator Dante Lauretta to join the science team and find opportunities for stereoscopy in the wealth of visual data acquired by the spacecraft’s cameras at Bennu.

To do this, we looked for pairs of images of Bennu’s surface taken from viewpoints some distance apart. This separation of viewpoints, known as the “baseline,” has to be just right to give us the experience of depth and reality when the images are viewed stereoscopically. Such viewing requires the left and right images to be delivered separately to our left and right eyes, which is how we see in “real life.” When this is done, the small differences between the components of the stereo pair – known as parallax differences – give our brains the opportunity to instantaneously perceive depth and solidity in the image.

These stereoscopic images are a pair of close-ups of ancient asteroid Bennu material retrieved by NASA’s OSIRIS-REx mission and delivered to Earth on Sept. 24, 2023. The material is on top of the TAGSAM (Touch-and-Go Sample Acquisition Mechanism), the instrument used to collect the sample from the asteroid in 2020. The sample and TAGSAM are currently in a clean room within the Astromaterials Curation Facility at NASA’s Johnson Space Center in Houston. Credit: Erika Blumenfeld, Joseph Abersold for the original images/Brian May, Claudia Manzoni for stereo processing of the images.

In the case of the images shown here, with the Bennu sample safely delivered to planet Earth, the curation team made it easy for us.  In the moments when the TAGSAM head was flipped over after removing it from the avionics deck at NASA’s Johnson Space Center in Houston, photographs from many angles were captured, enabling us to find just one (nearly!) perfect pair, showing the intimate structure of just a few grains of the dark, coal-black sample.

It’s possible to view this side-by side stereoscopic pair without a stereoscope, by relaxing the axes of the eyes, as if staring through the screen to infinity.  But the best experience will be had by using a stereoscope, the same way the OSIRIS-REx mission team viewed our stereo images while the search was on to find a safe spot on asteroid Bennu’s surface for the delicate Touch-and-Go sampling maneuver.

The largest “boulders” in this picture are about 1 centimeter across. Enjoy this piece of history in the making!

–Brian May

NASA’s OSIRIS-REx Asteroid Sample Curation Steps Closer to Final Reveal

As the astromaterials curation team at NASA’s Johnson Space Center continues to collect the bonus asteroid Bennu particles located outside the OSIRIS-REx TAGSAM (Touch-and-Go Sample Acquisition Mechanism) head, they’ve also completed additional steps toward disassembly and reveal of the bulk asteroid sample inside the head.

Five people in blue clean room gowns and white gloves stand around a glove box with a circular sample head inside.
OSIRIS-REx curation team members at NASA’s Johnson Space Center begin the process of removing and flipping the TAGSAM (Touch-and-Go Sample Mechanism) from the avionics deck of the science canister. Credit: NASA/James Blair

Curation scientists removed 14 circular witness plates from the top of the TAGSAM head on Monday and Tuesday. These plates were used to monitor interior environmental conditions of the spacecraft at various points during the mission and were carefully contained and stored away for contamination knowledge.

After removing all 14 plates and collecting any remaining loose dust, the team removed the TAGSAM head from its avionics deck platform and had the first opportunity to view the 24 surface contact pads on the bottom of the head and the asteroid sample beneath the collector head.

When the sample collector touched the asteroid in October 2020, these surface contact pads trapped fine-grained asteroid rocks and dust directly from Bennu’s surface layer. The materials in the contact pads will provide a unique set of samples that will tell scientists about the conditions at the very surface of Bennu.

The asteroid material on and interior to the capture ring — the secure base into which the TAGSAM was seated when stowed — came from the sample collection event. During collection, TAGSAM shot nitrogen gas at Bennu to push asteroid particles from as deep as 19 inches (50 cm) below the surface into the TAGSAM head, which sealed with a flap. If collected particles held that flap open, they would fall out into the area interior to the capture ring.

These two sets of collected materials will thus give scientists information about the surface material and material at greater depths below the surface. Altogether, these fine-grained samples from the asteroid will help scientists and researchers make new discoveries about the geologic history of asteroid Bennu, its impact history, and implications for asteroid impact assessment.

Images of the bulk sample and early analysis results will be revealed during a live NASA event on Wednesday, Oct. 11 at 11 a.m. EDT.

Rachel Barry
NASA’s Johnson Space Center, Houston

NASA’s OSIRIS-REx Spacecraft Views Sample Return Capsule’s Departure

After years of anticipation and hard work by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification and Security – Regolith Explorer) team, a capsule of rocks and dust collected from asteroid Bennu returned to Earth on Sept. 24 in a targeted area of the Department of Defense’s Utah Test and Training Range near Salt Lake City.

A few hours before the landing, OSIRIS-REx took some of its final views of its own sample return capsule.

a vaguely muffin-shaped capsule, with a copper-brown base and an off-white top, against the black backdrop of space

This image of the OSIRIS-REx sample return capsule still attached to the spacecraft’s instrument deck was captured by the spacecraft’s StowCam camera on Sept. 23 at 10:37:55 a.m. EDT (14:37:55 UTC), less than 24 hours before the capsule’s release. StowCam, a color imager, is one of three cameras comprising TAGCAMS (the Touch-and-Go Camera System), which is part of OSIRIS-REx’s guidance, navigation, and control system. TAGCAMS was designed, built, and tested by Malin Space Science Systems; Lockheed Martin integrated TAGCAMS to the OSIRIS-REx spacecraft and operates TAGCAMS. Credit: NASA/Goddard/University of Arizona/Lockheed Martin

black and white sequence of a circular capsule spinning away from the POV of the camera, with a bright-white sunglare at the top of the frame

This black-and-white sequence of OSIRIS-REx’s sample return capsule descent toward Earth comes from TAGCAMS’s NavCam 1 and was taken in the moments after the capsule’s release from the spacecraft on Sept. 24, 2023. The Sun is visible at the top of the frame, and a thin “crescent Earth” can be seen at the left edge of the image. OSIRIS-REx’s NavCams are used for optical navigation of the spacecraft. NavCam images tracked star-fields and landmarks on Bennu to determine the spacecraft’s position during mission operations. This sequence of images has been processed to remove most of the scattered sunlight, bring out more detail of the capsule and release debris cloud, and prevent the Earth crescent from saturating. Credit: NASA/Goddard/University of Arizona/Lockheed Martin

Looking like an inverted chocolate cupcake, the returned OSIRIS-REx sample capsule rests on gray-brown desert sand, a distant mountain ridge in the background

Charred from its journey through Earth’s atmosphere, the OSIRIS-REx sample return capsule is shown here shortly following its landing on Sept. 24 in Utah’s Great Salt Lake Desert. Shortly after this photo was taken, the capsule was transported to a temporary clean room at the Department of Defense’s Utah Test and Training Range, and then flown on Sept. 26 to Houston and transported to NASA’s Johnson Space Center there. Credit: NASA/Keegan Barber

Following a flight aboard a U.S. Air Force C-17 aircraft on Sept. 26, the OSIRIS-REx sample return capsule was taken into a customized clean room at NASA’s Johnson Space Center in Houston. Meanwhile, the OSIRIS-APEX spacecraft – on a new mission with a new name – is on a course toward asteroid Apophis, which it will reach in 2029.