NASA Announces OSIRIS-REx Bulk Sample Mass

A top-down view of a ring of eight wedge-shaped steel containers. Black rocks and dust populate the containers, with the largest amounts in the wedges at the top of the photograph. Stainless steel tools such as tweezers and small scoops are resting on trays on either side of the ring of containers.
A view of eight sample trays containing the final material from asteroid Bennu. The dust and rocks were poured into the trays from the top plate of the Touch-and-Go Sample Acquisition Mechanism (TAGSAM) head. 51.2 grams were collected from this pour, bringing the final mass of asteroid sample to 121.6 grams. Credit: NASA/Erika Blumenfeld & Joseph Aebersold

NASA’s OSIRIS-REx spacecraft delivered 4.29 ounces (121.6 grams) of material from asteroid Bennu when it returned to Earth on Sep. 24, 2023; the largest asteroid sample ever collected in space and over twice the mission’s requirement.

The mission team needed at least 60 grams of material to meet the mission’s science goals, an amount that had already been exceeded before the Touch-and-Go Sample Acquisition Mechanism (TAGSAM) head was completely opened. In October 2023, curation processors from the Astromaterials Research and Exploration Science (ARES) division at NASA’s Johnson Space Center in Houston were able to collect small rocks and dust from inside the large canister that housed the TAGSAM head, as well as from inside the TAGSAM head itself through the head’s mylar flap.

Disassembly of the TAGSAM head was paused in late October 2023, when the team encountered two stubborn fasteners keeping them from being able to complete the process to reveal the final sample within.

A view of a stainless steel and glass scientific glovebox, around which 3 women in blue cleanroom suits are working with their hands in thick, white rubber gloves through the sides of the glovebox. They are working with a round stainless steel device in which a flat ring is covered in black, rocky material.
OSIRIS-REx astromaterials processors, from left, Rachel Funk, Julia Plummer, and Jannatul Ferdous prepare to lift the top plate of the Touch-and-Go Sample Acquisition Mechanism (TAGSAM) head and pour the final portion of asteroid rocks and dust into sample trays below. Credit: NASA/Robert Markowitz

After designing, producing, and testing new tools, the ARES curation engineers successfully removed the fasteners in January and completed disassembly of the TAGSAM head. The remaining Bennu sample was revealed and carefully poured into wedge-shaped containers. 1.81 ounces (51.2 grams) were collected from this pour. Combined with the previously measured 2.48 ounces (70.3 grams) and additional particles collected outside of the pour, the bulk Bennu sample mass totals 4.29 ounces (121.6 grams). NASA will preserve at least 70% of the sample at Johnson for further research by scientists worldwide, including future generations.

From NASA Johnson’s repository, the Bennu material will be containerized and distributed for researchers to study. As part of the OSIRIS-REx mission, a cohort of more than 200 scientists around the world will explore the regolith’s properties, including researchers from many US institutions, NASA partners JAXA (Japan Aerospace Exploration Agency) and CSA (Canadian Space Agency), and more.

Later this spring, the curation team will release a catalog of the OSIRIS-REx samples, which will make the asteroid sample available for request by the global scientific community.

By Rachel Barry
NASA’s Johnson Space Center

Download additional high-resolution images here.

NASA’s OSIRIS-REx Team Clears Hurdle to Access Remaining Bennu Sample

NASA’s OSIRIS-REx curation engineer, Neftali Hernandez, attaches one of the tools developed to help remove two final fasteners that prohibited complete disassembly of the TAGSAM (Touch-and-Go Sample Acquisition Mechanism) head that holds the remainder of material collected from asteroid Bennu. Engineers on the team, based at NASA’s Johnson Space Center in Houston, developed new tools that freed the fasteners on Jan. 10. Image credit: NASA/Robert Markowitz

Curation team members at NASA’s Johnson Space Center in Houston have successfully removed the two fasteners from the sampler head that had prevented the remainder of OSIRIS-REx’s asteroid Bennu sample material from being accessed.

Steps now are underway to complete the disassembly of the Touch-and-Go Sample Acquisition Mechanism, or TAGSAM, head to reveal the rest of the rocks and dust delivered by NASA’s first asteroid sample return mission.

“Our engineers and scientists have worked tirelessly behind the scenes for months to not only process the more than 70 grams of material we were able to access previously, but also design, develop, and test new tools that allowed us to move past this hurdle,” said Eileen Stansbery, division chief for ARES (Astromaterials Research and Exploration Science) at Johnson. “The innovation and dedication of this team has been remarkable. We are all excited to see the remaining treasure OSIRIS-REx holds.”

The remainder of the bulk sample will be fully visible after a few additional disassembly steps, at which point image specialists will take ultra-high-resolution pictures of the sample while it is still inside the TAGSAM head. This portion of the sample will then be removed and weighed, and the team will be able to determine the total mass of Bennu material captured by the mission.

Curation processors paused disassembly of the TAGSAM head hardware in mid-October after they discovered that two of the 35 fasteners could not be removed with the tools approved for use inside the OSIRIS-REx glovebox.

In response, two new multi-part tools were designed and fabricated to support further disassembly of the TAGSAM head. These tools include newly custom-fabricated bits made from a specific grade of surgical, non-magnetic stainless steel; the hardest metal approved for use in the pristine curation gloveboxes.

“In addition to the design challenge of being limited to curation-approved materials to protect the scientific value of the asteroid sample, these new tools also needed to function within the tightly-confined space of the glovebox, limiting their height, weight, and potential arc movement,” said Dr. Nicole Lunning, OSIRIS-REx curator at Johnson. “The curation team showed impressive resilience and did incredible work to get these stubborn fasteners off the TAGSAM head so we can continue disassembly. We are overjoyed with the success.”

Prior to the successful removal, the team at Johnson tested the new tools and removal procedures in a rehearsal lab. After each successful test, engineers increased the assembly torque values and repeated the testing procedures until the team was confident the new tools would be able to achieve the torque needed while minimizing the risk of any potential damage to the TAGSAM head or any contamination of the sample within.

Despite not being able to fully disassemble the TAGSAM head, the curation team members had already collected 2.48 ounces (70.3 grams) of asteroid material from the sample hardware, surpassing the agency’s goal of bringing at least 60 grams to Earth. They have fulfilled all the sample requests received from the OSIRIS-REx science team so far and have hermetically sealed some of the Bennu sample for better preservation over long timescales (e.g., multiple decades), storing some at ambient temperature conditions and others at -112 Fahrenheit (-80 degrees Celsius).

Later this spring, the curation team will release a catalog of the OSIRIS-REx samples, which will be available to the global scientific community.

Download additional high-resolution images here

NASA Finds Likely Cause of OSIRIS-REx Parachute Deployment Sequence

NASA’s OSIRIS-REx sample return capsule landed under parachute in the Utah desert on Sept. 24, 2023, and safely delivered a cannister of rocks and dust collected from near-Earth asteroid Bennu. Although the delivery was successful, the landing sequence did not go entirely according to plan, with a small parachute called a drogue not deploying as expected.

After a thorough review of the descent video and the capsule’s extensive documentation, NASA found that inconsistent wiring label definitions in the design plans likely caused engineers to wire the parachutes’ release triggers such that signals meant to deploy the drogue chute fired out of order.

The drogue was expected to deploy at an altitude of about 100,000 feet. It was designed to slow and stabilize the capsule during a roughly five-minute descent prior to main parachute deployment at an altitude of about 10,000 feet. Instead, at 100,000 feet, the signal triggered the system to cut the drogue free while it was still packed in the capsule. When the capsule reached 9,000 feet, the drogue deployed. With its retention cord already cut, the drogue was immediately released from the capsule. The main parachute deployed as expected, and its design was robust enough to stabilize and slow the capsule, resulting in a safe landing more than a minute earlier than expected. There was no negative impact to OSIRIS-REx’s Bennu sample as a result of the unexpected drogue deployment.

In the design plans for the system, the word “main” was used inconsistently between the device that sends the electric signals, and the device that receives the signals. On the signal side, “main” meant the main parachute. In contrast, on the receiver side “main” was used as a reference to a pyrotechnic that fires to release the parachute canister cover and deploy the drogue. Engineers connected the two mains, causing the parachute deployment actions to occur out of order.

To confirm the root cause, NASA will test the system responsible for releasing the parachutes. This hardware is currently inside one of the glove boxes with the Bennu sample at NASA’s Johnson Space Center in Houston. Once the curation team there completes processing the sample material – the mission’s top priority at present – NASA engineers will be able to access the parachute hardware and verify the cause.

Rani Gran
NASA’s Goddard Space Flight Center, Greenbelt, Maryland

NASA’s OSIRIS-REx Achieves Sample Mass Milestone

The curation team processing NASA’s asteroid Bennu sample has removed and collected 2.48 ounces (70.3 grams) of rocks and dust from the sampler hardware – surpassing the agency’s goal of bringing at least 60 grams to Earth.

And the good news is, there’s still more of NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) sample to collect.

The sample processed so far includes the rocks and dust found on the outside of the sampler head, as well as a portion of the bulk sample from inside the head, which was accessed through the head’s mylar flap. Additional material remaining inside the sampler head, called the Touch-and-Go Sample Acquisition Mechanism, or TAGSAM, is set for removal later, adding to the mass total.

In the last week, the team at NASA’s Johnson Space Center in Houston changed its approach to opening the TAGSAM head, which contained the bulk of the rocks and dust collected by the spacecraft in 2020. After multiple attempts at removal, the team discovered two of the 35 fasteners on the TAGSAM head could not be removed with the current tools approved for use in the OSIRIS-REx glovebox. The team has been working to develop and implement new approaches to extract the material inside the head, while continuing to keep the sample safe and pristine.

As a first step, the team successfully accessed some of the material by holding down the head’s mylar flap and removing the sample inside with tweezers or a scoop, depending on material size. The collection and containment of material through this method, combined with the earlier collection of material located outside the head, yielded a total mass exceeding the 60 grams required.

The team will spend the next few weeks developing and practicing a new procedure to remove the remaining asteroid sample from the TAGSAM sampler head while simultaneously processing the material that was collected this week. The OSIRIS-REx science team will also proceed with its plan to characterize the extracted material and begin analysis of the bulk sample obtained so far.

All curation work on the sample – and the TAGSAM head – is performed in a specialized glovebox under a flow of nitrogen to keep it from being exposed to Earth’s atmosphere, preserving the sample’s pristine state for subsequent scientific analysis. The tools for any proposed solution to extract the remaining material from the head must be able to fit inside the glovebox and not compromise the scientific integrity of the collection, and any procedures must be consistent with the clean room’s standards.

While the procedure to access the final portion of the material is being developed, the team has removed the TAGSAM head from the active flow of nitrogen in the glovebox and stored it in its transfer container, sealed with an O-ring and surrounded by a sealed Teflon bag to make sure the sample is kept safe in a stable, nitrogen-rich, environment.

NASA’s OSIRIS-REx Spacecraft Views Sample Return Capsule’s Departure

After years of anticipation and hard work by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification and Security – Regolith Explorer) team, a capsule of rocks and dust collected from asteroid Bennu returned to Earth on Sept. 24 in a targeted area of the Department of Defense’s Utah Test and Training Range near Salt Lake City.

A few hours before the landing, OSIRIS-REx took some of its final views of its own sample return capsule.

a vaguely muffin-shaped capsule, with a copper-brown base and an off-white top, against the black backdrop of space

This image of the OSIRIS-REx sample return capsule still attached to the spacecraft’s instrument deck was captured by the spacecraft’s StowCam camera on Sept. 23 at 10:37:55 a.m. EDT (14:37:55 UTC), less than 24 hours before the capsule’s release. StowCam, a color imager, is one of three cameras comprising TAGCAMS (the Touch-and-Go Camera System), which is part of OSIRIS-REx’s guidance, navigation, and control system. TAGCAMS was designed, built, and tested by Malin Space Science Systems; Lockheed Martin integrated TAGCAMS to the OSIRIS-REx spacecraft and operates TAGCAMS. Credit: NASA/Goddard/University of Arizona/Lockheed Martin

black and white sequence of a circular capsule spinning away from the POV of the camera, with a bright-white sunglare at the top of the frame

This black-and-white sequence of OSIRIS-REx’s sample return capsule descent toward Earth comes from TAGCAMS’s NavCam 1 and was taken in the moments after the capsule’s release from the spacecraft on Sept. 24, 2023. The Sun is visible at the top of the frame, and a thin “crescent Earth” can be seen at the left edge of the image. OSIRIS-REx’s NavCams are used for optical navigation of the spacecraft. NavCam images tracked star-fields and landmarks on Bennu to determine the spacecraft’s position during mission operations. This sequence of images has been processed to remove most of the scattered sunlight, bring out more detail of the capsule and release debris cloud, and prevent the Earth crescent from saturating. Credit: NASA/Goddard/University of Arizona/Lockheed Martin

Looking like an inverted chocolate cupcake, the returned OSIRIS-REx sample capsule rests on gray-brown desert sand, a distant mountain ridge in the background

Charred from its journey through Earth’s atmosphere, the OSIRIS-REx sample return capsule is shown here shortly following its landing on Sept. 24 in Utah’s Great Salt Lake Desert. Shortly after this photo was taken, the capsule was transported to a temporary clean room at the Department of Defense’s Utah Test and Training Range, and then flown on Sept. 26 to Houston and transported to NASA’s Johnson Space Center there. Credit: NASA/Keegan Barber

Following a flight aboard a U.S. Air Force C-17 aircraft on Sept. 26, the OSIRIS-REx sample return capsule was taken into a customized clean room at NASA’s Johnson Space Center in Houston. Meanwhile, the OSIRIS-APEX spacecraft – on a new mission with a new name – is on a course toward asteroid Apophis, which it will reach in 2029.

Initial Curation of NASA’s OSIRIS-REx Sample

The initial curation process for NASA’s OSIRIS-REx  sample of asteroid Bennu is moving slower than anticipated, but for the best reason: the sample runneth over. The abundance of material found when the science canister lid was removed earlier this week has meant that the process of disassembling the TAGSAM (Touch-and-Go Sample Acquisition Mechanism) head – which holds the bulk of material from the asteroid – is off to a methodical start.

A silver capsule is opened inside a glovebox surrounded by technicians gowned in blue protective suits
NASA curation team members along with Lockheed Martin recovery specialists look on after the successful removal of the sample return canister lid. Credit: NASA/Robert Markowitz

After the collection event on Bennu three years ago, scientists expected they could find some asteroid material in the canister outside the TAGSAM head when they saw particles slowly escaping the head before it was stowed. However, the actual amount of dark particles coating the inside of the canister lid and base that surrounds the TAGSAM is even more than they’d anticipated.

“The very best ‘problem’ to have is that there is so much material, it’s taking longer than we expected to collect it,” said deputy OSIRIS-REx curation lead Christopher Snead of NASA’s Johnson Space Center. “There’s a lot of abundant material outside the TAGSAM head that’s interesting in its own right. It’s really spectacular to have all that material there.”

The first sample collected from outside the TAGSAM head, on the avionics deck, is now in the hands of scientists who are performing a quick-look analysis, which will provide an initial understanding of the Bennu material and what we can expect to find when the bulk sample is revealed.

“We have all the microanalytical techniques that we can throw at this to really, really tear it apart, almost down to the atomic scale,” said Lindsay Keller, OSIRIS-REx sample analysis team member from Johnson.

The quick-look research will utilize various instruments, including a scanning electron microscope (SEM), infrared measurements, and x-ray diffraction (XRD), to gain a better understanding of the sample.

The SEM will offer a chemical and morphological analysis, while the infrared measurements should provide information on whether the sample contains hydrated minerals and organic-rich particles. The x-ray diffraction is sensitive to the different minerals in a sample and will give an inventory of the minerals and perhaps an indication of their proportions.

“You’ve got really top-notch people and instruments and facilities that are going to be hitting these samples,” Keller said.

This quick-look science is a tool that will offer more data to researchers as they approach the larger pieces of sample for follow-on analysis.

Over the coming weeks, the curation team will move the TAGSAM head into a different specialized glovebox where they will undertake the intricate process of disassembly to ultimately reveal the bulk sample within.

Rachel Barry
NASA’s Johnson Space Center, Houston

The OSIRIS-REx Sample Canister Lid is Removed

NASA scientists found dark powder and sand-sized particles on the avionics deck of the OSIRIS-REx science canister when the initial lid was removed today. The canister from the OSIRIS-REx sample return capsule was delivered to NASA’s Johnson Space Center in Houston on Sept. 25 after landing in the Utah desert on Sept. 24. Johnson houses the world’s largest collection of astromaterials, and curation experts there will perform the intricate disassembly of the Touch and Go Sample Acquisition Mechanism (TAGSAM) to get down to the bulk sample within. These operations are happening in a new laboratory designed specifically for the OSIRIS-REx mission. The aluminum lid was removed inside a glovebox designed to enable working with the large piece of hardware.

Lockheed Martin Recovery Specialists, Levi Hanish and Michael Kaye remove the lid of the sample return cannister. Credit: NASA/Robert Markowiz 
Lockheed Martin Recovery Specialists Levi Hanish and Michael Kaye remove the lid of the sample return canister. Credit: NASA/Robert Markowiz

When the TAGSAM is separated from the canister, it will be inserted in a sealed transfer container to preserve a nitrogen environment for up to about two hours. This container allows enough time for the team to insert the TAGSAM into another unique glovebox. Ultimately, this speeds up the disassembly process. There is a very high level of focus from the team — the sample will be revealed with an amazing amount of precision to accommodate delicate hardware removal so as not to come into contact with the sample inside.

With an array of team members on deck, scientists and engineers at Johnson will work together to complete the disassembly process and reveal the sample to the world in a special live broadcast event on Oct. 11 at 11 a.m. ET, streamed at NASA.gov/live.

Shaneequa Vereen
NASA’s Johnson Space Center, Houston

NASA’s OSIRIS-REx Capsule Arrives in Houston

The first U.S. asteroid sample, delivered by the OSIRIS-REx spacecraft to Earth on Sept. 24, has arrived at its permanent home at NASA’s Johnson Space Center in Houston, where it will be cared for, stored, and distributed to scientists worldwide.  

A shipping container with the canister of asteroid Bennu sample is strapped down onboard a U.S. Air Force C-17 aircraft. The sample canister, along with disassembled capsule components and environmental samples from Utah, was transported to NASA’s Johnson Space Center in Houston on Sept. 25, 2023 – one day after landing in the Utah desert. Credit: NASA/ Molly Wasser.

The sample arrived in Houston at 12:40 pm ET (11:40 am CT) aboard a U.S. Air Force C-17 aircraft, which landed at Ellington Field. From there, it was transferred to NASA Johnson. 

The team will spend the next few weeks in the clean room at Johnson built exclusively for Bennu samples. The clean room includes custom glove boxes built to fit the sample canister containing the TAGSAM (Touch-and-Go Sample Acquisition Mechanism) head inside. The TAGSAM head was on the end of a robotic arm that collected rocks and dust from asteroid Bennu’s surface on October 20, 2020.   

The new OSIRIS-REx sample clean room at NASA’s Johnson Space Center in Houston. Image was taken on June 22, 2023. Credit: NASA/James Blair.

Having practiced these procedures for months, scientists and technicians plan to proceed through the many steps of removing the sample from the TAGSAM. First, they plan to place the canister in the glove box and disassemble it. Then, they plan to remove the TAGSAM head, where scientists expect most sample to be, cataloging and storing every piece of hardware and asteroid dust found outside of it.

Researchers plan to analyze asteroid dust from the initial disassembly for an early glimpse into the chemical, mineralogical, and physical characteristics and rock types that may be found in the bulk sample.   

NASA plans to share these initial findings, plus first images of the sample, in a live broadcast on October 11. 

 

OSIRIS-REx Blog Coverage for Sample Landing Day Concludes

This picture was taken from outside a temporary clean room set up in a hangar on the Department of Defense’s Utah Test and Training Range. In the picture, OSIRIS-Rex team members are disassembling a capsule, with asteroid sample inside, that landed on the military range on Sept. 24, 2023. Credit: Keegan Barber.

NASA’s OSIRIS-REx clean room team has finished disassembling the sample capsule and packaging its components, including the unopened sample canister. Now packed in shipping containers – along with the environmental samples the recovery team collected around the capsule’s landing site this morning – the items are scheduled to be delivered on Monday, Sept. 25, to their permanent home at NASA’s Johnson Space Center in Houston. 

OSIRIS-REx Photos from Sample Landing Day

A desert landscape, sandy with tufts of green shrubs, is pictured here. In the middle of the image is a dark, cone-shaped object. To its left is an orange and white clump of fabric.
A capsule with a sample of asteroid Bennu inside, delivered to Earth on Sept. 24, 2023, by NASA’s OSIRIS-REx mission, is seen shortly after touching down on the Department of Defense’s Utah Test and Training Range. Photo Credit: Credit: NASA/Keegan Barber.

View or download photos from the Sept. 24 OSIRIS-REx sample-landing activities.

View or download OSIRIS-REx mission photos from a curated collection.