NASA’s PACE Mission Undergoes Milestone Testing

NASA’s PACE mission, which will provide a major boost to scientists studying Earth’s atmosphere and ocean health, completed a milestone test in October at the agency’s Goddard Space Flight Center in Greenbelt, Maryland.

The Ocean Color Instrument (OCI) on the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission passed thermal vacuum tests to ensure it can withstand the harsh space environments.

As we prepare the Plankton, Aerosol, and cloud Ecosystem satellite for launch, we’re gathering all the ingredients, um…instruments, and baking ourselves a fresh new satellite. Credit: NASA’s Goddard Space Flight Center/Scientific Visualization Studio. Video descriptions available

PACE will view the atmosphere and ocean surface from space. While highly useful for studying atmospheric aerosols, OCI is specifically designed to look for small aquatic organisms called phytoplankton that can be so numerous they influence the colors of the ocean. Phytoplankton play a large role in the ocean ecosystem — not only are they food sources for larger species, but they also convert carbon dioxide into organic matter through photosynthesis, playing an active role in moving carbon from the atmosphere into the ocean.

The PACE mission will help scientists learn more about the relationships between phytoplankton and the surrounding environment by measuring how light reflects off the ocean and through the atmosphere. Scientists can see these organisms in the ocean using satellites, but currently can’t differentiate the phytoplankton by type easily. Identifying types of phytoplankton help scientists to detangle some of the complex ecological systems in the oceans.

“When you look down at the ocean, you can see phytoplankton there and for the first time, with PACE, the scientists will be able to see what type of phytoplankton there are from space,” said Gary Davis, mission systems engineer at Goddard for the PACE mission. “Hopefully this mission will be able to communicate the importance of ocean health and the health of plankton to the whole world.”

To ensure the satellite is ready to gather this data, engineers put the satellite through, well, its paces. The thermal vacuum test that was just completed reduces atmospheric pressure as close to the vacuum of space as possible and then cycles through a wide range of temperatures. During the sunlit part of a spacecraft’s orbit, it can get very hot, up to approximately 50 degrees Celsius (122 degrees Fahrenheit); at other parts of the orbit, zero solar exposure means extremely low temperatures, as low as -90 degrees Celsius (-130 degrees Fahrenheit).

OCI, which was built at Goddard, can measure light in a multitude of colors, far more than previous satellites that share its frequent global coverage. Light variation by wavelength, the character of light by which it is defined, provides the color we see. OCI can detect a continuous spectrum of different wavelengths of light, and can even see colors beyond what the human eye can detect. By detecting more wavelengths, the instrument will allow scientists to tell the difference between types of phytoplankton from space. This is helpful in understanding the pathways of the carbon cycle in the atmosphere, land, and ocean, and characterizing the phytoplankton as harmful or helpful.

“OCI is really a stretch of the state of the art of what we can do right now,” said Davis. “It’s probably the most advanced thing we have on the observatory.”

Former ocean-observing satellites had the ability to measure light at a small set of wavelengths through the development of multi-spectral instruments. OCI has the ability to measure color continuosly at many ultraviolet, visible, and near infrared wavelengths, also known as hyperspectral imaging.

The previous missions can be imagined as a regular 8-color box of crayons, said Jeremy Werdell, project scientist for the PACE mission. Though still highly valuable for creating a complete picture, there are gaps in between the shades of colors. For PACE, OCI can be imagined as a 128-color box of crayons, filling in those gaps using smaller and continuous intervals of wavelengths.

“With all of the colors of the rainbow here, most of us don’t know what we’re going to discover, because we’ve never had that chance on global scales,” Werdell said. “It’s the only mission planned at NASA or elsewhere that provide global hyperspectral, full colors of the rainbow everywhere, everyday.”

When light from the sun reflects off the ocean, that light has already traveled from the sun, through the atmosphere – clouds and aerosols that compose Earth’s atmosphere – and water before it reaches the plankton in the ocean. The light then bounces off the plankton and travels back through the water and atmosphere again. The light that makes its way through all those stages can tell a story through color but still needs to be analyzed and accounted for any atmospheric effects, which is where the polarimeters on PACE come into play.

The Hyper-Angular Rainbow Polarimeter 2 (HARP2) also recently completed TVAC testing, earlier in September. The instrument is one of two multi-angle polarimeters on PACE, which act as polarized sunglasses for the spacecraft, measuring how light bends as it travels through the water droplets, clouds, and aerosols in Earth’s atmosphere, informing scientists more about their physical properties, as well as providing another source of color measurements. HARP2 was built at the University of Maryland, Baltimore County.

SPEXone, the other multi-angle polarimeter, was built in the Netherlands by engineers from SRON Netherlands Institute for Space Research, Airbus Netherlands and NASA. Each of the three instruments will be integrated into the spacecraft as they complete their individual tests – and in fact, OCI was just lifted onto the spacecraft on November 21.

“We have an observatory!” said Werdell.

As the timeline of events for PACE ticks on, the days are being counted down, all leading to the launch scheduled for early 2024.

For more information on PACE, visit https://pace.gsfc.nasa.gov.

By Erica McNamee, Science Writer at NASA’s Goddard Space Flight Center