Parker Solar Probe Enters Thermal Vacuum Chamber

On Wednesday, Jan. 17, NASA’s Parker Solar Probe was lowered into the 40-foot-tall thermal vacuum chamber at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The spacecraft will remain in the chamber for about seven weeks, coming out in mid-March for final tests and packing before heading to Florida. Parker Solar Probe is scheduled to launch from NASA’s Kennedy Space Center on July 31, 2018, on a Delta IV Heavy launch vehicle.

The spacecraft is lifted into the air by a crane
Parker Solar Probe is slowly lifted and carried to the top of the thermal vacuum chamber, which will simulate the airless environment of space, in addition to conducting intense hot and cold temperature testing.
Credit: NASA/JHUAPL/Ed Whitman

The thermal vacuum chamber simulates the harsh conditions that Parker Solar Probe will experience on its journey through space, including near-vacuum conditions and severe hot and cold temperatures.

“This is the final major environmental test for the spacecraft, and we’re looking forward to this milestone,” said Annette Dolbow, Parker Solar Probe’s integration and test lead from the Johns Hopkins Applied Physics Lab. “The results we’ll get from subjecting the probe to the extreme temperatures and conditions in the chamber, while operating our systems, will let us know that we’re ready for the next phase of our mission – and for launch.”

The spacecraft is lowered into the thermal vacuum chamber
NASA’s Parker Solar Probe descends into the thermal vacuum chamber at NASA’s Goddard Space Flight Center. The spacecraft will be inside the chamber for about seven weeks.
Credit: NASA/JHUAPL/Ed Whitman

During thermal balance testing, the spacecraft will be cooled to -292 degrees Fahrenheit. Engineers will then gradually raise the spacecraft’s temperature to test the thermal control of the probe at various set points and with various power configurations.

Next, thermal cycling testing will transition the spacecraft from cold to hot and back again several times, simulating the conditions it will experience many times during its mission to the Sun. The Parker Solar Probe team will also test operation of the spacecraft’s hardware at both hot and cold plateaus, as well as perform a mission simulation.

People push a spacecraft wrapped in translucent material on a rolling platform
Members of the NASA Parker Solar Probe team wheel the spacecraft – bagged to protect it from contamination – from its cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., to the thermal vacuum chamber, where it will undergo approximately seven weeks of testing at extreme temperatures that will simulate the space environment.
Credit: NASA/JHUAPL/Ed Whitman
The spacecraft is lowered into the thermal vacuum chamber
Engineers and technicians from the Parker Solar Probe team monitor the descent of the spacecraft into the thermal vacuum chamber.
Credit: NASA/JHUAPL/Ed Whitman
People begin reconnecting the spacecraft to power inside the thermal vacuum chamber
Parker Solar Probe team members begin the process of reattaching the spacecraft to power and other systems in preparation for testing the operation of the probe in intense heat and cold while in an airless environment.
Credit: NASA/JHUAPL/Ed Whitman

Download these images in HD formats from NASA’s Scientific Visualization Studio. 

By Sarah Frazier

NASA’s Goddard Space Flight Center