Revised Launch Date Targeted for Parker Solar Probe

NASA and the Johns Hopkins University Applied Physics Laboratory are now targeting launch of the agency’s Parker Solar Probe spacecraft no earlier than Aug. 4, 2018. Originally scheduled to launch on July 31, additional time is needed to accommodate further software testing of spacecraft systems. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida.

Parker Solar Probe will fly closer to the Sun’s surface than any spacecraft before it, facing brutal heat and radiation conditions and ultimately providing humanity with the first-ever samplings of a star’s corona.

Power Up: Solar Arrays Installed on NASA’s Mission to Touch the Sun

Two people in bunny suits stand on either end of a solar array and examine it.
Members of the Parker Solar Probe team examine and align one of the spacecraft’s two solar arrays on May 31, 2018. Credit: NASA/Johns Hopkins APL/Ed Whitman

NASA’s Parker Solar Probe depends on the Sun, not just as an object of scientific investigation, but also for the power that drives its instruments and systems. On Thursday, May 31, 2018, the spacecraft’s solar arrays were installed and tested. These arrays will power all of the spacecraft’s systems, including the suites of scientific instruments studying the solar wind and the Sun’s corona as well as the Solar Array Cooling System (SACS) that will protect the arrays from the extreme heat at the Sun.

Two people in bunny suits kneel in front of a solar panel attached to a spacecraft while operating a purple laser in the dark.
After installation of the solar arrays on May 31, 2018, Parker Solar Probe team members use a laser to illuminate the solar cells and verify that they can create electricity and transfer it to the spacecraft. Credit: NASA/Johns Hopkins APL/Ed Whitman

“Unlike solar-powered missions that operate far from the Sun and are focused only on generating power from it, we need to manage the power generated along with the substantial heat that comes from being so close to the Sun,” said Andy Driesman, project manager from the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “When we’re out around the orbit of Venus, we fully extend the arrays to get the power we need. But when we’re near the Sun, we tuck the arrays back until only a small wing is exposed, and that portion is enough to provide needed electrical power.”

A spacecraft sits in a clean room with a solar array installed on the side.
Parker Solar Probe’s two solar arrays – one of which is shown here on the spacecraft – were installed on the spacecraft on May 31, 2018. Credit: NASA/Johns Hopkins APL/Ed Whitman

The solar arrays are cooled by a gallon of water that circulates through tubes in the arrays and into large radiators at the top of the spacecraft. They are just over three and a half feet (1.12 meters) long and nearly two and a half feet (0.69 meters) wide. Mounted on motorized arms, the arrays will retract almost all of their surface behind the Thermal Protection System – the heat shield – when the spacecraft is close to the Sun. The solar array installation marks some of the final preparation and testing of Parker Solar Probe leading up to the mission’s July 31 launch date.

Download these images in HD formats from NASA’s Scientific Visualization Studio. 

By Justyna Surowiec

Johns Hopkins Applied Physics Laboratory

A view from the bottom of a solar panel, looking up as a person in a bunny suit works on the top of the panel.
A member of the Parker Solar Probe team examines one of the spacecraft’s two solar arrays on May 31, 2018. Credit: NASA/Johns Hopkins APL/Ed Whitman