Parker Solar Probe Marks First Mission Milestones on Voyage to Sun

Just two days after launch on Aug. 11, 2018, from Cape Canaveral Air Force Station in Florida, NASA’s Parker Solar Probe achieved several planned milestones toward full commissioning and operations, announced mission controllers at the Johns Hopkins Applied Physics Laboratory, or APL, in Laurel, Maryland.

On Aug. 13, the high-gain antenna, which Parker Solar Probe uses to communicate high-rate science data to Earth, was released from locks which held it stable during launch. Controllers have also been monitoring the spacecraft as it autonomously uses its thrusters to remove (or “dump”) momentum, which is part of the flight operations of the spacecraft. Managing momentum helps the spacecraft remain in a stable and optimal flight profile.

Parker Solar Probe Launch
The United Launch Alliance Delta IV Heavy rocket launches NASA’s Parker Solar Probe on its voyage to the Sun, Aug. 12, 2018, from Launch Complex 37 at Cape Canaveral Air Force Station, Florida. Parker Solar Probe is humanity’s first-ever mission into the Sun’s atmosphere, called the corona. Here it will directly explore solar processes that are key to understanding and forecasting space weather events that can impact life on Earth.
Credit: NASA/Bill Ingalls

There are four instrument suites on board Parker Solar Probe, which will each need to be powered and readied for science data collection. The FIELDS investigation, which consists of the most elements, went first. It was powered up on Aug. 13 for two activities. First was the opening of the clamps which held four of the five FIELDS antennas stowed during takeoff. These antennas will be deployed roughly 30 days after launch, and they will stick out from the corners of the spacecraft’s heat shield — called the Thermal Protection System — and be exposed to the harsh solar environment. Second, the spacecraft’s magnetometer boom was fully deployed. This boom contains three magnetometers and a fifth, smaller electric field antenna, all part of the FIELDS suite. Further instrument check-outs and deployments are scheduled in the coming days for the spacecraft.

As of 12:00 p.m. EDT on Aug. 16, Parker Solar Probe was 2.9 million miles from Earth, traveling at 39,000 miles per hour, and heading toward its first Venus flyby scheduled for Oct. 3, 2018, at 4:44 a.m. EDT. The spacecraft will use Venus to slightly slow itself and adjust its trajectory for an optimal path toward first perihelion of the Sun on Nov. 5, 2018, at 10:27 p.m. EST (Nov. 6, 2018, at 03:27 UTC).

“Parker Solar Probe is operating as designed, and we are progressing through our commissioning activities,” said Project Manager Andy Driesman of APL. “The team — which is monitoring the spacecraft 24 hours a day, seven days a week — is observing nominal data from the systems as we bring them on-line and prepare Parker Solar Probe for its upcoming initial Venus gravity assist.”

By Geoff Brown
Johns Hopkins University Applied Physics Lab

NASA’s Parker Solar Probe Begins Journey to the Sun

At Cape Canaveral Air Force Station's Space Launch Complex 37, the Delta IV Heavy rocket with NASA's Parker Solar Probe, lifts off at 3:31 a.m. EDT on Sunday, Aug. 12, 2018.
At Cape Canaveral Air Force Station’s Space Launch Complex 37, the Delta IV Heavy rocket with NASA’s Parker Solar Probe, lifts off at 3:31 a.m. EDT on Sunday, Aug. 12, 2018. The spacecraft was built by Applied Physics Laboratory of Johns Hopkins University in Laurel, Maryland. The mission will perform the closest-ever observations of a star when it travels through the Sun’s atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Photo credit: NASA/Kim Shiflett
Dr. Eugene Parker watches liftoff of Delta IV Heavy rocket carrying NASA's Parker Solar Probe at 3:31 a.m. on Aug. 12, 2018.
Dr. Eugene Parker, a pioneer in heliophysics and S. Chandrasekhar distinguished service professor emeritus for the Department of Astronomy and Astrophysics at the University of Chicago, watches the launch of NASA’s Parker Solar Probe. This is the first agency mission named for a living person. The liftoff took place at 3:31 a.m. EDT on Sunday, Aug. 12, 2018. Photo credit: NASA/Glenn Benson

NASA’s Parker Solar Probe is on its way for a rendezvous with the Sun. A United Launch Alliance Delta IV Heavy rocket, carrying the spacecraft, lifted off at 3:31 a.m. EDT, from Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida, its engines blazing golden in the clear night sky during ascent.

“It was a very quiet launch countdown, it went off like clockwork,” said Omar Baez, NASA Launch Director. “Parker Solar Probe has been one of our most challenging missions to date. I’m very proud of the team that worked to make this happen. We at NASA and the Launch Services Program are thrilled to be part of this mission.”

About four minutes into flight, a series of key events occurred. The Delta IV port and starboard booster engines shut down and separated, the main core booster engine cut off and then separated from the second stage. After second stage engine ignition, the payload fairing was jettisoned. After second stage main engine cutoff and separation, the Parker Solar Probe separated from the third stage, provided by Northrup Grumman. Shortly afterward, mission managers confirmed that the spacecraft’s solar arrays successfully deployed and the spacecraft was operating on its own power.

Parker Solar Probe Mission Patch.During its mission to “touch” the Sun, Parker Solar Probe will use gravity assists from Venus seven times over nearly seven years to gradually bring its orbit closer to the Sun. It will fly directly through the Sun’s atmosphere, as close as 3.8 million miles from its surface, closer to the surface than any spacecraft before it. The spacecraft will hurtle around the Sun at speeds up to 430,000 miles per hour. That’s about 210 times faster than a speeding bullet.

Parker Solar Probe will revolutionize our understanding of the Sun’s corona. Facing brutal heat and radiation, the spacecraft will fly close enough to watch the solar wind speed up from subsonic to supersonic, and fly through the birthplace of the highest-energy solar particles. Parker Solar Probe and its instruments will be protected from the Sun’s heat by a 4.5-inch-thick, carbon-carbon composite heat shield. The shield’s front surface will be able to withstand temperatures outside the spacecraft up to 2,500 degree Fahrenheit. While the inside, or back surface of the shield will withstand temperatures up to 650 degrees Fahrenheit.

For more than 60 years, scientist have wondered how energy and heat move through the solar corona and what accelerates the solar wind as well as solar energetic particles. Now, with the help of cutting-edge thermal technology that can protect the mission on its dangerous journey, the spacecraft’s four instrument suites will study magnetic fields, plasma and energetic particles, and image the solar wind.

In 2017, the mission was renamed for Eugene Parker, the S Chandrasekhar Distinguished Service Professor Emeritus, Department of Astronomy and Astrophysics at the University of Chicago. In the 1950s, Parker, a solar astrophysicist, proposed a number of concepts about how stars–including our Sun–give off energy. He called this cascade of energy the solar wind, and he described an entire complex system of plasmas, magnetic fields, and energetic particles that make up this phenomenon. Parker also theorized an explanation for the superheated solar atmosphere, the corona, which is–contrary to what was expected by physics laws–hotter than the surface of the Sun itself. This is the first NASA mission that has been named for a living individual.

Parker Solar Probe is part of NASA’s Living With a Star program to explore aspects of the Sun-Earth system that directly affect life and society. The Living With a Star flight program is managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, manages the mission for NASA. APL designed and built the spacecraft and also will operate it.

Parker Solar Probe is the fourth mission for NASA’s Launch Services Program (LSP) this year. LSP is responsible for launch service acquisition, integration, analysis and launch management for each mission.

This concludes today’s coverage of NASA’s Parker Solar Probe countdown, launch and ascent into space for its mission to explore the Sun.

 

Delta IV Second Stage Final Firing

The Delta IV Heavy second stage is firing its small thrusters to position itself and the Parker Solar Probe into the proper position to fire its main engine for the final time during the mission. Everything remains on schedule for the flight.

Liftoff! The ULA Delta IV Heavy Rocket Clears the Launch Pad With NASA’s Parker Solar Probe

The United Launch Alliance Delta IV Heavy rocket lifts off from Space Launch Complex 37 at Cape Canaveral Air Force Station at 3:31 a.m. EDT, carrying NASA's Parker Solar Probe.
The United Launch Alliance Delta IV Heavy rocket lifts off from Space Launch Complex 37 at Cape Canaveral Air Force Station at 3:31 a.m. EDT, carrying NASA’s Parker Solar Probe. Photo credit: NASA

Booster ignition and liftoff of the United Launch Alliance Delta IV Heavy rocket at 3:31 a.m. EDT, from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, carrying NASA’s Parker Solar Probe.

About four minutes into flight, a series of key events occurs in rapid succession: Delta IV port and starboard booster engines shut down and separate, main booster engine cutoff, separation of the booster from the second stage, ignition of the second stage main engine, then jettison of the payload fairing.

T-4 Minutes and Counting

ULA Delta IV Heavy on Space Launch Complex 37.The Parker Solar Probe countdown is underway toward a liftoff at 3:31 a.m. EDT. During the last four minutes of the countdown, the Delta IV Heavy propellant tanks will be brought up to flight pressure, the rocket and spacecraft will be confirmed on internal power, and the Eastern Range and launch managers will perform final status checks. A computerized autosequencer will take over the countdown in order to conduct a host of activities in precise order.