Parker Solar Probe Completes a Record-Setting Swing by the Sun

Blazing along at space-record speeds that would get it from Earth to the Moon in under an hour, NASA’s Parker Solar Probe completed its 10th close approach to the Sun on Nov. 21, coming within 5.3 million miles (8.5 million kilometers) of the solar surface.

Parker Solar Probe is in the 10th of 24 planned, progressively closer orbits around the Sun. the spacecraft, built and operated at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, launched on Aug. 12, 2018. Credit: NASA/Johns Hopkins APL

The close approach (known as perihelion), also at a record distance, occurred at 4:25 a.m. EST (8:25 UTC), with Parker Solar Probe moving 364,660 miles per hour (586,864 kilometers per hour). The milestone also marked the midway point in the mission’s 10th solar encounter, which began Nov. 16 and continues through Nov. 26.

The spacecraft entered the encounter in good health, with all systems operating normally. Parker Solar Probe is scheduled to check back in with mission operators at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland – where it was also designed and built – on Nov 24.

The spacecraft will transmit science data from the encounter – largely covering the properties and structure of the solar wind as well as the dust environment near the Sun – back to Earth from Dec. 23-Jan. 9.

Space Dust Presents Opportunities, Challenges as Parker Solar Probe Speeds Back toward the Sun

Illustration of Parker Solar Probe facing the Sun
Artist’s concept of Parker Solar Probe approaching the Sun. Credit: NASA/Johns Hopkins APL/Steve Gribben

Propelled by a recent swing past Venus, NASA’s Parker Solar Probe is healthy and performing normally as it heads toward its next closest approach to the Sun on Nov. 21.

Parker Solar Probe will break its own distance and speed records on that approach – the 10th of 24 planned, progressively closer trips around the Sun – when it comes about 5.3 million miles (8.5 million kilometers) from the Sun’s surface, while reaching top speeds of 101 miles (163 kilometers) per second, or 364,621 miles per hour. The probe’s science instruments are already queued up to measure the properties of the solar wind near its source, but the spacecraft is also making other critical, if not unexpected, discoveries.

“We’re observing higher than expected amounts of dust near the Sun,” said Nour Raouafi, Parker Solar Probe project scientist at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland. “What’s exciting about this is it’s greatly improving our understanding of the innermost regions of our heliosphere, giving us insight into an environment that, until now, was a total mystery.”

Parker Solar Probe designed, built and now operated at APL, does not carry a dust detector. But as dust grains pelt the spacecraft along its path, the high-velocity impacts create clouds of plasma. These clouds produce unique electrical charges that are picked up by several sensors on the probe’s FIELDS instrument, which is designed to measure the electric and magnetic fields near the Sun. Mission scientists have used this data, for example, to construct comprehensive pictures of the structure and behavior of the large cloud of dust that swirls through the innermost solar system.

The visible imaging camera, WISPR, also picks up bits of material expelled from the spacecraft’s structures after impact with those dust grains. But it also images dust structures far away from the spacecraft, such as the dust ring that shares Venus’ orbit. While learning about space dust isn’t a prime mission science goal, the WISPR and FIELDS have planned for specifically investigating near-Sun dust – in a region of the solar system where no mission has ever operated.

The Parker Solar Probe team did prepare for the spacecraft’s precarious trek through this potentially hazardous environment – as early as the initial mission concept phase – at least as well as our scientific community understood it before the probe’s 2018 launch.

“We designed materials and components that survive hypervelocity dust impacts and the effects of the even smaller particles created in these impacts,” said Jim Kinnison, Parker Solar Probe mission systems engineer at APL. “We modeled the makeup and effects of the dust environment, tested how materials react to the dust particles, and installed fault-tolerant onboard systems that are keeping Parker Solar Probe safe in this unexplored region.”

The spacecraft team has noticed that occasionally, the star tracking cameras used as part of the guidance and control system see reflected light from dust and shattering particles that can momentarily disrupt their ability to see stars. Kinnison noted, however, that this doesn’t compromise the safety of spacecraft or instrument operations, and the star trackers aren’t the spacecraft’s only method of controlling where it points. The guidance and control software uses data from the star trackers in tandem with an inertial measurement unit and solar-limb sensors to keep the Thermal Protection System – the heat shield – pointed toward the Sun.

“Because the system was built to be robust and highly autonomous, loss of data from any one source doesn’t affect the ability to control the spacecraft attitude, and in a worst-case situation, can work indefinitely with just the Solar Limb Sensors that watch for unexpected solar illumination on the spacecraft due to attitude errors,” he said. “With PSP now in its 10th orbit around the Sun, the spacecraft is proving it can handle this unexpected dust environment.”

And that’s good news, he added, with Parker Solar Probe only set to move closer to – and faster around – the Sun. Assisted by two more Venus flybys, in August 2023 and November 2024, Parker Solar Probe will eventually come within 4 million miles (6.2 million kilometers) of the solar surface in December 2024, at speeds topping 430,000 miles per hour.

Parker Solar Probe Heads Toward Second Venus Flyby

After nearly 17 months in space culminating with the release of new science data, Parker Solar Probe is right on course for its second Venus gravity assist maneuver. This flyby will set the spacecraft up for its fourth perihelion of the Sun, during which it will set records for spacecraft speed and closest solar distance, while continuing to gather groundbreaking data from within the Sun’s corona to help scientists make new discoveries.

Diagram of the locations and dates of Parker Solar Probe’s first four Venus gravity assists. The upcoming Venus gravity assist on Dec. 26, 2019, will be the second such maneuver of the mission.

On Dec. 26, at 1:14 p.m. EST, Parker Solar Probe will perform its second Venus flyby, during which the spacecraft will fly within 1,870 miles of Venus, using the planet to slow itself down and adjust its trajectory for an optimal path toward the Sun. This move allows Parker Solar Probe to precisely position itself for a fourth orbit around Earth’s star—with its next close approach, or perihelion, on January 29, 2020—when it will break its own speed and distance records, flying within 11.6 million miles of the Sun’s surface, 20 percent closer than its first three perihelia.

“These gravity assist maneuvers create the enormous orbit reduction required to get Parker Solar Probe close to the Sun,” said Yanping Guo, mission and navigation design manager for Parker Solar Probe at the Johns Hopkins Applied Physics Lab (APL) in Laurel, Maryland. “The seven Venus flybys are connected in a unique sequence, and each of the flybys is chosen not only to make the necessary orbit reductions, but also to hit the subsequent flybys.”

To prepare for this planetary maneuver, the Parker Solar Probe mission operations team at APL performed a small trajectory correction maneuver (TCM) on the spacecraft on Dec. 8. This TCM very accurately lined up the spacecraft for the rendezvous with Venus. After the flyby, the team will perform another TCM to fine-tune Parker Solar Probe’s final approach for its fourth perihelion.

The spacecraft will complete five more of these critical Venus flybys in the coming years in order to gradually pull it closer to the Sun.

By Justyna Surowiec

Johns Hopkins Applied Physics Lab