Exploring Pluto and a Billion Miles Beyond

Today’s blog is from Alan Stern of the Southwest Research Institute in Boulder, Colorado—principal investigator for NASA’s New Horizons mission.  

Year of KBO image
New Horizons is on its way to a new flyby, where it will study an ancient building block of small planets like Pluto, on New Year’s Day 2019. Credit: Roman Tkachenko

As 2016 ends, I can’t help but point out an interesting symmetry in where the mission has recently been and where we are going. Exactly two years ago we had just taken New Horizons out of cruise hibernation to begin preparations for the Pluto flyby. And exactly two years from now we will be on final approach to our next flyby, which will culminate with a very close approach to a small Kuiper Belt object (KBO) called 2014 MU69 – a billion miles farther out than Pluto – on Jan. 1, 2019. Just now, as 2016 ends, we are at the halfway point between those two milestones.

During this phase between flyby operations, all of the systems and scientific instruments aboard New Horizons are healthy. In October, we completed the 16-month-long transmission of all Pluto flyby data to Earth. Our science team is now steadily analyzing those data, making new discoveries and writing reports to research journals like Science, Nature, Icarus, the Journal of Geophysical Research and the Astronomical Journal. Almost 50 scientific papers reporting new results about Pluto and its system of moons were submitted this year!

Additionally, our science and science operations teams have made two major Pluto submissions to NASA’s archive of all planetary mission data, the Planetary Data System (PDS). Two final submissions to the PDS will be made in 2017, wrapping up the archiving of Pluto data for others in the scientific community to use. Those upcoming submissions will include better-calibrated datasets resulting from the intensive, post-Pluto flyby calibration campaign we conducted this summer using all seven payload instruments aboard New Horizons and a series of “meta-products” like maps and atmospheric profiles created from New Horizons data.

The year ahead will begin with observations of a half-dozen KBOs by our LORRI telescope/imager in January. Those observations, like the ones we made in 2016 of another half-dozen KBOs, are designed to better understand the orbits, surface properties, shapes, satellite systems and frequency of rings around these objects. These observations can’t be done from any groundbased telescope, the Hubble Space Telescope, or any other spacecraft – because all of those other resources are either too far away or viewing from the wrong angles to accomplish this science. So this work is something that only New Horizons can accomplish.

The Astrophysical Journal Letters
This is the abstract of the first scientific paper reporting new results from the study of KBOs by New Horizons, and the first observations of KBOs from within the Kuiper Belt. The full paper can be found on the website for The Astrophysical Journal Letters. Credit: Astrophysical Journal Letters

Also in January, we’ll continue studying the dust and charged-particle environment of the Kuiper Belt using the SWAP, PEPSSI and SDC instruments, and we’ll use our Alice ultraviolet spectrometer to study the hydrogen gas that permeates the vast cocoon of space surrounding the sun called the heliosphere.

February is likely to begin with a small (about a half-meter per second) course correction maneuver to better target the close flyby of 2014 MU69. In March, once all the KBO data collected in January is back on Earth, we’ll put New Horizons in hibernation for the first time since 2014. That will last until September, when we’ll begin several more months of KBO observations using LORRI.

Kuiper Belt diagram
This diagram covers various aspects of our plan for observing almost two-dozen KBOs as we cross the Kuiper Belt between 2016 and 2020. Credit: JHUAPL/SwRI/John Spencer

While New Horizons “sleeps” through much of 2017, our spacecraft, mission operations, and science teams will be designing, writing and testing the spacecraft command sequences for the 2014 MU69 flyby. For Pluto that job took most of 2009 to 2013. But because the MU69 flyby is barely two years away, we have to compress all the planning into the next 18 months. Why? Because flyby operations for 2014 MU69 will begin in July 2018.

Coffee cup
Can’t get Pluto off your mind? Me neither – sometimes even when I’m not working on data or research papers, such as when I was served this cup of cappuccino one morning. Share any quirky reminders of Pluto or its moons you have on Twitter @NewHorizons2015 or @AlanStern. Credit: Alan Stern

When New Horizons reaches 2014 MU69 just under two years and two weeks from now, we’ll be setting another record – for exploring the farthest world ever explored, over 4 billion miles from Earth! Since there no planned mission after New Horizons to explore worlds in the Kuiper Belt, it’s anyone’s bet how long it will be before our record is eclipsed.

So, as 2016 ends and 2017 prepares to dawn, I want to wish you all the very best for the holidays and the coming year. I’m going to spend the holidays with family, thankful that our team has now successfully collected all of the data from the first exploration of Pluto and its moons, and is hard at work analyzing that gold mine!

Pluto: What a Journey!

This blog is from Hal Weaver, who joined the New Horizons team in May 2002, his first assignment after taking a job at the Johns Hopkins University Applied Physics Laboratory. He started out as the principal investigator for the LOng Range Reconnaissance Imager (LORRI) and in 2003 became the New Horizons project scientist.

Now that most of the New Horizons science data have been downlinked to Earth, it seems only fitting to reflect on the long journey that took us to the frontier of our solar system. Below are some personal memories I’d like to share about this incredible voyage of discovery.

The pre-launch years were a time of intense activity for the New Horizons project. As soon as New Horizons received its funding in 2002, the team worked feverishly to deliver the spacecraft to Kennedy Space Center in time for the earliest possible launch window and the shortest flight time to Pluto. As we struggled to deliver the systems and instruments to the spacecraft during the spring of 2005, the payload team started having Sunday morning telecons to stay on track. This was typical behavior across the New Horizons project—people doing whatever it took to meet the looming deadlines. A camaraderie developed that would sustain us throughout the entire mission, and I feel privileged to have worked with such an outstanding group of engineers, managers and scientists.

The New Horizons spacecraft was shipped to Kennedy Space Center/Cape Canaveral Air Force Station in September 2005, where various tests were run to demonstrate readiness for launch. We passed the Mission Readiness Review with flying colors on Dec. 13, 2005. But there was still some high drama during NASA’s Flight Readiness Review at the Cape in January 2006, when a launch vehicle technical issue threatened an indefinite delay. Fortunately, the NASA administrator ultimately decided it was safe to launch, and away we went on Jan. 19, the fastest spacecraft ever to leave the Earth! Watching the picture-perfect launch of New Horizons with the rest of the science team, and then hugging each other as we savored the moment, was one of my favorite experiences during the mission.

New Horizons Spacecraft launch
The left image shows the New Horizons spacecraft during testing at Kennedy Space Center in fall 2005. At right, New Horizons lifts off from Cape Canaveral Air Force Station on Jan. 19, 2006. Credit: NASA

The aperture door of the LOng Range Reconnaissance Imager (LORRI) was finally opened Aug. 29, 2006, and its first images of a star cluster looked great. But in early September, the New Horizons Guidance and Control system’s lead engineer appeared ashen-faced at my office door announcing that LORRI had accidentally been pointed at the sun. Anyone who has worked with telescopes knows that focusing sunlight on a sensitive detector can overheat and destroy the detector. Fortunately, the sun was only briefly slewed across the LORRI detector, and LORRI survived without any degradation in performance. This experience was a poignant reminder that constant vigilance would be needed to ensure a successful Pluto flyby.

The Pluto encounter in July 2015 was the highlight of the New Horizons mission, with enough memories to fill an entire book. But I truly will never forget the scene in my office just after midnight on July 13, when I displayed on my computer screen the last full-frame image of Pluto taken by LORRI, which had just been downlinked from the spacecraft. There were five other colleagues in my office – the team that produced the beautiful color images displayed for the world the next morning – and we all gasped at the iconic “heart” of Pluto and marveled at the diversity of the terrain surrounding it. During media interviews leading up to the encounter, I frequently stated that an important objective of the New Horizons mission was to transform Pluto from the pixelated view seen from Earth into a real world, with complexity and diversity. As the figure below demonstrates, mission accomplished!

The Pluto image to the left was taken by the Faint Object Camera of the Hubble Space Telescope in 1994 and is representative of the highest resolution achieved from Earth. The Pluto image to the right was taken by New Horizons just 16 hours before closest approach in July 2015. This LORRI image is the raw, compressed version seen by New Horizons scientists shortly after midnight on July 13, but it still clearly demonstrates the dramatic increase in science content available from a flyby mission. Credits: NASA/ESA/A. Stern and M. Buie (left image); NASA/JHUAPL/SWRI (right image)

I can’t believe a year has passed since NASA’s New Horizons spacecraft successfully executed its historic encounter with the Pluto system. People around the world have been captivated by the incredible new views of Pluto and its moons provided by New Horizons. As much as I love planetary astronomy and spacecraft missions, I love my family even more and want to thank them for their support while I indulged my scientific passions.

I’m deeply appreciative of the opportunity to participate in this grand adventure, and I’m looking forward to the January 2019 New Horizons encounter with the Kuiper Belt object 2014 MU69, which might be the most primitive body ever visited by a spacecraft.

Hal Weaver
New Horizons Project Scientist Hal Weaver
Credits: JHUAPL/Mike Buckley

Commanding the Eyes of New Horizons

This New Horizons blog is a team effort between Cathy Olkin, the co-principal investigator of the New Horizons Ralph instrument, and Ralph instrument engineer Eddie Weigle.

Just as it takes teamwork to fly a spacecraft to Pluto – even tasks like checking the commands that are sent to the spacecraft are done by a team – we decided to team up on this blog to take you behind-the-scenes of interplanetary spaceflight. Specifically, we’ll tell you how we check the commands for New Horizons’ Ralph instrument to make sure they will accomplish the desired science objectives.

New Horizons Ralph Instrument
The Ralph instrument is the main “eyes” of New Horizons and is charged with making the maps that show what Pluto, its moons, and other Kuiper Belt objects look like. The instrument is so named because it’s coupled with an ultraviolet spectrometer called Alice in the New Horizons remote-sensing package – a reference familiar to fans of “The Honeymooners” TV show. Credits: NASA/JHUAPL/SwRI

Cathy: A command load is a set of commands that are transmitted to the spacecraft’s computers from Earth – in our case, sent through NASA’s largest Deep Space Network antennas – which control the spacecraft’s activities. Sometimes the command load covers a short period of time – maybe four days, or a week – but in other instances a single command load can span months, such as when New Horizons was in hibernation mode for much of the journey to Pluto.

For the time around closest approach to Pluto, we had one command load that executed commands over a nine-day time span ranging from one week before closest approach to two days after. These command loads are built by the science and mission operations teams and are then checked by the spacecraft engineers and instrument teams. That’s where we come in. We check the command loads for the Ralph instrument, a color camera and near-infrared imaging spectrometer.

We had more than 20 versions of this nine-day command load. The command load had 30,124 lines that needed to be checked! We checked that the instruments would carry out the desired science observations and that nothing would harm the spacecraft or instruments.

The first step in checking a command load is to compare where the instrument is pointing with the desired location. The Ralph instrument builds up images by scanning the field of view of the instrument across the target and I check that the pointing of the instrument is right by looking at a visualization of the commands using a tool call the Satellite Tool Kit.

Now, I will turn it over to Eddie to tell you more about how we check the command loads.

Eddie: Now we get to the fun stuff: making sure the Ralph instrument is doing what the scientists want. Prior to creating the command load, the Ralph science team confers and debates over the best possible ways to use the instrument. There are several facets to consider when deciding on the science. These discussions for creating Science Activity Plans (SAPs) must take into account the Ralph operating mode, where and when to point the instrument, the observation target, memory requirements, the type of data compression, and downlink time. Each SAP the science team approves is broken down into one or more “observations.” Each observation has a single purpose, and consists of a particular target, operating mode, and time.

With all this information, the command load is built. The load contains commands not just for Ralph, but for all the other instruments and subsystems as well, including the spacecraft itself. These command loads may contain thousands of commands, so to check each version of each load manually would be extremely time-consuming. So to aid our team in verifying the loads, we developed a Python script to analyze the full file. The script verifies that all the necessary commands are there to properly execute each observation.

After all the subsystem leads check and approve the command script, we still need to make sure the commands work as they should. So we run each command load on the New Horizons Operations Simulator – or “NHOPS”—a fancy name for a set of electronics that functions just like the spacecraft itself. Understanding the full complexity of the entire spacecraft typically goes beyond any individual instrument team, so we conduct a dry run to ensure all resources are properly used. To analyze the results of each NHOPS run, the Ralph team developed a web-based tool called Ralph Activity Manager (RAM).

RAM provides the team with end-to-end coverage for the commanding of the instrument. It not only includes the command checker I described earlier, but also correlates the spacecraft telemetry, the telemetry from the simulator tests, the command loads, and the science objectives. This allows us to easily track and manage all of the science goals, from the time we decide what to observe, until the data from those observations are on the ground.

And that, in a nutshell, is how we confirm the commanding on New Horizons is accurate – and how the mission team was not only able to deliver the goods on one of the great planetary encounters of our time, but also how we’ll continue to explore the farthest reaches of the solar system!

NH team
Eddie Weigle (left) and Cathy Olkin with New Horizons teammate Allen Lunsford during Pluto flyby. Courtesy of Cathy Olkin

Pluto: Preparing for the Perfect Alignment

Today’s blog is from Anne Verbiscer, a research associate professor in the Department of Astronomy at the University of Virginia. On the New Horizons science team she studies the scattering properties and composition of icy surfaces in the Pluto system and the Kuiper Belt.

Every year, planets orbiting the sun beyond Earth’s orbit reach what astronomers call “opposition,” when they appear in the sky at the position opposite that of the sun. At opposition, the planet, or satellite or asteroid, and the sun line up with Earth between them. Pluto and its moons were at opposition this year on July 8, at 03:30 universal time. Sometimes these alignments are so precise that if you were standing on the surface of one of these bodies and looking back at Earth, you would see our planet transit (or move across) the solar disk.

Earth and Moon transit the solar disk
Earth and Moon transit the solar disk, seen from an outer planet during a “special” opposition when the planet is near the Line of Nodes. Credits: P. Molaro, et al., from arXiv 1509.01136, 2015

These “special” oppositions take place when the planet is near what is called the Line of Nodes at the time of opposition. The Line of Nodes is the intersection of the plane of the Earth’s orbit and a planet’s orbit. If the planet is near one of these intersection points at the time of opposition, it is in near-perfect alignment with the Earth and sun. Pluto was last near one of these intersection points in 1931 and will be again in 2018. After that, because of the eccentricity of Pluto’s orbit, it will be another 161 years until the next perfect alignment opportunity.

The Line of Nodes
The Line of Nodes is the intersection between the orbital plane of Pluto (purple) and that of Earth (white). Because Pluto’s orbit is significantly inclined relative to the ecliptic plane, node crossings are rare, and because Pluto’s orbit is eccentric, they occur in 87- and 161-year intervals. Credit: Anne Verbiscer

Pluto’s last node crossing was within one year of Clyde Tombaugh’s discovery in 1930. Did Tombaugh discover Pluto because it happened to lie right in the plane of the Earth’s orbit and the orbits of most of the other planets in the solar system in 1930? Probably. But did the fact that objects tend to be brighter, sometimes exceptionally so when they are near opposition, also increase Tombaugh’s chances of making his famous discovery? Perhaps. Pluto was definitely brighter at that time, but just how much brighter? And why was it brighter? To answer those questions, we need to investigate the “opposition effect.”

The Opposition Effect

The surfaces of airless bodies in the solar system all exhibit an “opposition effect.” This is the (sometimes dramatic) increase in reflected sunlight that occurs when a planet, moon, asteroid or comet is at opposition. The angle between the sun and Earth as seen from the planet is called the solar phase angle, or simply the phase angle. The opposition effect is the increase in brightness observed as the phase angle decreases to zero.

Saturn and its rings and moons had their node crossing in January 2005, and several of the world’s telescopes were watching. The 2.2-meter telescope at Calar Alto Observatory in Spain obtained the three images below at different phase angles. When Saturn was at opposition on the night of Jan. 13, 2005, the phase angle decreased to 0.02 degrees and the rings became stunningly bright, far brighter than they were at a larger phase angle in February and even brighter than they were just one night after opposition. Why did the rings get so bright? And why did Saturn not get bright?

Three views of Saturn
Three views of Saturn from Spain’s Calar Alto Observatory in 2005. On the night of Jan. 13, Saturn was very close to the Line of Nodes. Note how bright the rings appear. Only one night later (center) they are significantly dimmer, and even more diminished in brightness a month later (right). Credit: Calar Alto Observatory

The opposition effect is the product of two phenomena: particle shadow hiding and coherent backscatter. When a planetary surface or ring is at opposition, particles can hide their own shadows and contribute to an increase in brightness. Additionally, incident (or incoming) rays of sunlight can interfere constructively with sunlight reflected from the surface at opposition and increase the observed brightness. Atmospheres, however, do not exhibit dramatic opposition effects like the rings and moons do. Astronomers watching Saturn’s moons on the night of Jan. 13 were amazed to see Rhea, Saturn’s second largest moon, appear brighter than mighty Titan, Saturn’s largest moon which is covered by a thick atmosphere. Despite the fact that Rhea’s projected surface area is more than 11 times smaller than Titan’s, it was visibly brighter entirely due to the opposition effect.

The Opposition Effect and Analyzing New Horizons Data

So what does the opposition effect tell us about a planetary surface? By carefully measuring the change in reflectance as phase angles get smaller and smaller, physical surface properties such as porosity, particle size and transparency can be discerned from the opposition effect.

The quantitative analysis of how light is scattered from a particulate surface requires looking at all viewing angles, not just at opposition or at “full moon,” but all the way to “thin crescent.” As New Horizons approached Pluto last year, the phase angle was about 15 degrees, and through the encounter, the phase angles at which New Horizons instruments viewed Pluto and its moons grew larger and larger until they were finally viewing these bodies backlit by the sun at phase angles near 170 degrees. But New Horizons never viewed Pluto or its moons at phase angles smaller than 8 percent, far larger than the phase angles attainable from Earth and at opposition. Because of the size of Earth’s orbit viewed from Pluto, Pluto and its moons can never be observed from Earth at phase angles larger than about 2 degrees.

By combining the data gathered by New Horizons at larger phase angles with data acquired from Earth-based telescopes, we can measure some physical properties of the surfaces in the Pluto system by studying the manner in which sunlight is scattered from them. Observations at larger phase angles tell us about surface roughness, while those at the smallest phase angles hold clues to the particle sizes and how tightly they are compacted, or the surface porosity.

Pluto and Charon
Pluto and Charon as seen by the New Horizons Long Range Reconnaissance Imager (LORRI) on July 8, 2015, at a phase angle of about 15 degrees. Credits: NASA/JHUAPL/SwRI

What will happen when Pluto and its moons cross their Line of Nodes on July 12, 2018? Charon is normally about half as bright as Pluto, but when is at opposition near the Line of Nodes, will it appear brighter than Pluto, like Rhea was brighter than Titan when Saturn crossed its Line of Nodes in 2005? Probably not, since Pluto’s atmosphere is much thinner than Titan’s. How much of a boost in reflectance did Pluto’s opposition effect give Clyde Tombaugh? We won’t know just how bright Pluto can get until 2018, but you can be sure we will be watching to find out, and to learn more about the fascinating surfaces of Pluto and Charon!

Anne Verbiscer
Anne Verbiscer
Credit: University of Virginia/
Dan Addison

26 Years and 3 Billion Miles to Pluto

Fran Bagenal is a research scientist at the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder, who is working on the New Horizons mission to Pluto and the Juno mission to Jupiter. Her main area of expertise is the study of charged particles trapped in planetary magnetic fields. She remembers a young Alan Stern walking into her office in 1989 and suggesting a mission to Pluto.

“Whatever units you use – Kelvin, Fahrenheit or Celsius – it’s bloody cold on Pluto!” I incant in my strongest English accent.

I love giving public talks about Pluto. The audience is dying to see the latest pictures. And the New Horizons mission is a great success story. I recently returned from Toronto, where Pluto was the centerpiece of an annual astronomy evening – as it has been in many towns this past year. The Canadians peppered me with questions well into the night.

Alan Stern and Fran Banenal
In this photo from a meeting of the Outer Planets Science Working Group in April 1991, Alan Stern (left) and Fran Bagenal (right) pitched the case for a mission to Pluto. Credit: Dale Cruikshank

Planetary exploration is a story of people. I start my talks showing how clever people in the mid-20th century used telescopes to pin down basic facts about Pluto (size, mass, temperature, composition, atmosphere, etc). With Voyager 2 completing its exploration of the outer planets in the fall of 1989, Alan Stern — then chairman of the Outer Planets Science Working Group — rallied support to go to Pluto. But in those days, when Pluto was a small, lonely misfit on the edge of the solar system, it was hard to convince people to send a mission just to Pluto. This all changed with the advent of digital photography that allowed the discovery of objects – now thousands of them – in the Kuiper Belt. Pluto became one of a class of objects that hinted at a much more complicated solar system history.

After a year of amazing pictures of Pluto’s complex surface from New Horizons, it feels bizarre to see the fuzzy pictures from Hubble and remember just how little we could see before. I scroll through the New Horizons’ images of convecting nitrogen ice, water ice mountains, puzzling pits, and the photochemistry of haze and tholins on the surface – repeating jokes about confused geologists that always seem to get a laugh.

Toronto audience takes in Paul Schenk’s cool 3-D images
Everyone loves 3-D! This Toronto audience takes in Paul Schenk’s cool 3-D images of Pluto during one of Fran Bagenal’s many public talks. Credit: Chris Sasaki

Sometimes the 3-D pictures are a great success, sometimes not so much. I guess there’s a huge range in human visual perception. But by now the questions are flowing. Some are basic: Why not land on Pluto? Because we preferred to take science instruments than the necessary fuel. Where next? NASA has just approved an extended mission to New Horizons’ next target: an object in the Kuiper Belt known as 2014 MU69. The science team has a running joke that the KBO’s name is “Jim Green”—a reference to NASA’s director of planetary science. This usually elicits chuckles from the group.

Some of the questions during my talks are basic science: Why does Pluto have an atmosphere but not Earth’s moon? Chemistry, location, temperature. What’s the heat source driving the convection? There’s enough heat from the rock inside. (I think.) Then there is the dreaded question: Why not carry a magnetometer? In Toronto, I was lucky to have Sabine Stanley — Toronto planetary physics professor — in the audience, who nodded in strong agreement when I said, “I’m pretty certain Pluto does not have a magnetic dynamo.”

Some questions are about the human side: What did you do for the 9.5 years to get to Pluto? Plan and work on other missions. How come there are so many women on the team? Good leadership (New Horizons Principal Investigator Alan Stern and Jim Elliott, MIT professor and planetary occultation expert) that fosters female participation. And Pluto’s fun!

The past 26 years have been a fantastic ride to Pluto. So much planetary science has emerged, with tons of new physics to study and a topic that engages the public. Yes, there have been ups and downs. But overall, what a great crew the New Horizons team is to work with. What’s next? Europa, Venus, Uranus, Quaoar…anyone?

Fran Bagenal
Fran Bagenal holds 3-D-printed models of the New Horizons spacecraft (left) and the Juno spacecraft (right). Juno successfully went into orbit around Jupiter on July 4 after an almost five-year journey. Credit: Chris Sasaki

From Canada to Pluto and Beyond

Today’s post is written by Alex Parker, a research scientist at the Southwest Research Institute in Boulder, Colorado, working on NASA’s New Horizons mission.

Nature is a common theme in Canadian literature, with desolate, remote landscapes often playing a role. It should come as no surprise, then, that Canada had a hand in writing the latest chapter in the story of Pluto, the most desolate and remote landscape ever explored.

To mark the first Canada Day (July 1) since the Pluto flyby, I wanted to share some of the ways that Canadian efforts have supported the New Horizons mission to Pluto and beyond.

A number of New Horizons team members are from Canada or were trained there in one way or another. I studied for my PhD at the University of Victoria in British Columbia; my PhD was in astrophysics, a field in which Canada is renowned as a global leader. Canada’s national partnership in the twin 8-meter Gemini observatories allowed me to pursue research in planetary astronomy, pushing the limits of what can be done with ground-based astronomical imaging without adaptive optics to explore the properties of binary systems in the Kuiper Belt. It was this work that prepared me for and eventually steered me toward the New Horizons mission, where I joined the team that discovered 2014 MU69, the post-Pluto target for a potential New Horizons extended mission.

Canada-France-Hawaii-Telescope and the Gemini North observatory
The Canada-France-Hawaii Telescope (left) and the Gemini North observatory (right). These two facilities both collected critical images in support of the New Horizons mission under Canadian-led programs. Credit: Alex Parker

Perhaps the most crucial Canadian contributions are in an area with a very long history: navigating a ship by the stars. During New Horizons’ approach to Pluto last year, it was a made-in-Canada star map that helped guide the way. National Research Council (NRC) of Canada scientists at the Canadian Astronomy Data Centre (CADC) in British Columbia used data collected from the Canada-France-Hawaii Telescope (CFHT) to assemble a detailed navigational star map for the mission, which was used by the Navigation and Hazards teams to keep the spacecraft on-course and safe from harm.

Dr. Stephen Gwyn and Dr. JJ Kavelaars, both at the NRC-CADC, have worked to support the New Horizons mission for years. JJ Kavelaars was my PhD supervisor, and both he and Stephen Gwyn taught me much of what I know about the astrometric and image processing techniques needed to find and track New Horizons’ potential post-Pluto target, 2014 MU69.

Gwyn developed and maintains MegaPipe, the data processing service that helps turn raw CFHT images into precisely-calibrated star maps, among other things. Using data collected from CFHT’s extremely well-calibrated MegaCam imager especially for the Pluto mission, Gwyn created a catalog the stars that would stand as a backdrop for Pluto during the flyby. The purpose of the catalog was to provide extremely precise locations and properties of the stars that would appear in New Horizons images on approach, so they could be used as navigational aids.

Frédéric Pelletier, a former Canadian Space Agency engineer from Quebec, was the KinetX Deputy Navigation Team Chief for the Pluto flyby. He and his team compared imagery from New Horizons to the CFHT star map to determine exactly the path that New Horizons was on with respect to Pluto, and adjust its course to achieve the planned flyby. The targeting was precise enough to fly New Horizons through the shadows of both Pluto and Charon. This allowed New Horizons to examine Pluto’s atmosphere backlit by the sun, and perform detailed analysis of its chemical makeup. The Atmospheres science team is led by Dr. Randy Gladstone at SwRI, who grew up in Canada and attended the University of British Columba.

Both Gwyn and Kavelaars are involved in our continued tracking of 2014 MU69, providing their expertise on matters of extremely high-precision astrometry of both stars and Kuiper Belt Objects. The CFHT star map is still in use for determining the precise orbit of 2014 MU69, and Kavelaars has led a Gemini Observatory program to track and refine the orbits of many other Kuiper Belt objects that New Horizons would study at long range during an extended mission.

If an extended mission is approved, these efforts will continue to help New Horizons find its way into the unknown as it flies to worlds in the outer solar system more distant than have ever been explored.

Alex Parker
Alex Parker

A World Beyond Pluto: Finding a New Target for New Horizons

Today’s post is written by Alex Parker, a research scientist at the Southwest Research Institute in Boulder, Colorado, working on NASA’s New Horizons mission.

Pluto and its moons are the most distant worlds ever visited by any of humanity’s robotic explorers, but for how much longer will that remain true? New Horizons is outbound through the Kuiper Belt, and two years ago today we discovered a smaller, more distant world that we could send it to. Likely an icy relic left behind from the era of planet formation, this world lies nearly a billion miles further from the sun than Pluto. While it will eventually be named something befitting such a world, it is currently designated 2014 MU69, and if New Horizons’ extended mission is approved by NASA, it will become the new most distant world ever explored on Jan. 1, 2019.

Illustration of objects in the outer solar system
Illustration of objects in the outer solar system, including Pluto and 2014 MU69, and the trajectory of New Horizons (yellow). The orbits of the planets are illustrated with cyan rings, and both asteroids and Kuiper Belt objects illustrated as points. Cold Classical Kuiper Belt objects are drawn in red. Credit: Alex Parker

It took years of effort from a dedicated team to find somewhere that New Horizons could visit after Pluto. We scoured the southern skies with Earth-bound and space-borne observatories, battling poor weather, unforeseeable hardware faults, and the endless interference of the dense star fields of Sagittarius, at the very center of our home galaxy itself. That search discovered over 50 new Kuiper Belt objects, and culminated with the discovery of New Horizons’ potential post-Pluto target, 2014 MU69.

What follows is a brief look back at that search, the discovery of 2014 MU69, and what it portends for the future of New Horizons and outer solar system exploration.

The Search Begins

Finding New Horizons a post-Pluto target in the Kuiper Belt was a long-standing mission goal. It was even included as a component of the original mission proposal in 2001 that New Horizons have the capacity for exploring a more distant Kuiper Belt object, should one be found that it could reach.

That last bit was the catch — at the time that New Horizons was designed, assembled, and launched, there were no suitable Kuiper Belt objects known near enough to the path that it would take out of the solar system for it to reach one after Pluto. Given that the first decade of the 21st century saw the peak rate of new Kuiper Belt object discoveries in all of history to date, why weren’t more known in the region of sky around Pluto?

Because that area of sky is one of the hardest to search for Kuiper Belt objects. It lies in front of the center of our galaxy and is packed full to brimming with background stars. For every Kuiper Belt object as faint as 2014 MU69 in our images, there were tens of thousands of stars far brighter.

Additionally, there was a quirk to the search that made waiting preferable: the longer we waited, the less sky we would have to search. You can imagine the swarm of possible Kuiper Belt objects that New Horizons could reach, all orbiting the sun on different paths with one common feature — those paths intersect with the path of New Horizons. As you go backward in time from the period during which New Horizons is passing through the Kuiper Belt, the paths of these Kuiper Belt objects diverge from one another, and they spread out like a dissipating cloud across the sky. The earlier we performed the search, then, the more sky we would have to cover in order to find these Kuiper Belt objects.

The first searches for a post-Pluto target were performed in 2004 at the Subaru observatory. At the time, the swarm of Kuiper Belt objects was quite spread out, so the search was performed over a relatively large area of sky without spending too long in any one area. These data were a large part of what was searched by the IceHunters citizen science effort, and a number of relatively bright Kuiper Belt objects were discovered in it, though none were within reach of New Horizons.

A small subsection of a single Magellan survey image
A small subsection of a single Magellan survey image, showing the dense star fields searched for Kuiper Belt objects. Credit: Alex Parker

I came into the project in 2011, with our first Magellan observatory survey. The twin Magellan telescopes are situated adjacent to one another atop Las Campanas in Chile. While slightly smaller telescopes than Subaru, their site delivered us some of the best atmospheric conditions of the entire search. Since it was later than the first Subaru search, we did not have to search as much sky to cover the full swarm of targetable Kuiper Belt objects. This meant we could spend more time on each area, and see fainter Kuiper Belt objects.

But the challenge of the Milky Way remained. Above is an example of what just a portion of one of our raw images looks like. Every star you can see in this image is many times brighter than the other Kuiper Belt objects we were looking for.

I joined the search as a postdoctoral researcher at the Harvard-Smithsonian Center for Astrophysics in 2011. There I was working on ways to suppress the stars in our images while leaving behind any and all objects that move like Kuiper Belt objects. These methods also had to compensate for the constantly-shifting blurring caused by the Earth’s atmosphere.

With lots of nights at the telescopes in Hawaii and Chile, lots of algorithm and code development, lots of CPUs crunching through the data, and lots of time spent scrubbing through the results manually to make sure nothing was missed, we turned up dozens of new KBOs between 2011 and 2013. Yet, while many of them came close to New Horizons’ path, still none of them were quite within reach of its fuel supply.

Taking The Search To Space

Time was growing tight, and we had to make a decision. We needed to not only find a targetable KBO, but we also needed to track its orbit over a long enough period of time that we could predict where it would be with the accuracy needed to target New Horizons for a hair-raising few-thousand-kilometer flyby. The longer we waited, the easier the search was to do, as the diffuse swarm of potentially-targetable KBOs slowly collapsed into a tight spot on the sky as the encounter dates approached. However, the time remaining for accurate follow up and orbital measurement got ever shorter.

2014 balanced both of these needs. It was the last year in which enough time remained to accurately measure any KBOs’ orbits well enough to target them with New Horizons, and it was late enough that the area of sky covered by potential targets had shrunk to the point that Alan Stern, the principal investigator of New Horizons, indicated that it was time to consider using our weapon of last resort: NASA’s Hubble Space Telescope.

Hubble has unrivaled sensitivity, and since it orbits above the Earth’s atmosphere, its unobscured view would permit us to search for KBOs hiding in front of our galaxy. The millions of background stars we had been contending with would be far less trouble for Hubble’s sharp vision.

That said, we knew that the survey we were asking for had no precedent. It would be the largest dedicated search for solar system objects ever conducted with Hubble. It would need to be designed with the utmost care, it would need to execute flawlessly, and the solar system would need to cooperate with us. And we would need to convince a panel of reviewers that this survey’s potential value outweighed the risk of coming up empty after investing so much of Hubble’s time.

As you might imagine, a request for the amount of Hubble time we needed could not be taken lightly, and the proposal was not a slap-dash affair. We painstakingly developed a risk-mitigating strategy that would both ensure our best chance of success while minimizing the amount of precious telescope time that would be wasted if the solar system did not cooperate by providing us with a targetable Kuiper Belt object.

Part of that strategy was a two-part search. We would perform a pilot project and prove that we could discover as many Kuiper Belt objects as our models predicted before proceeding with the larger main survey. We had a tight deadline to deliver this proof, with about two weeks to analyze this unprecedented new dataset, deliver our new discoveries, and pass the go-no go threshold for the full program.

With this strategy in place, we were awarded the time. And that was when things got really interesting.

In mid-June of 2014, we learned that our proposal had been selected, and that it was scheduled for immediate execution on Hubble. I quickly booked a flight to Boulder to join the rest of the team for the push to beat the tight demonstration deadline. I arrived in Boulder just as the first of the data was being collected by Hubble, orbiting somewhere far overhead.

I didn’t know it at the time, but the intense search effort that followed was a preview of what the following summer would be like as New Horizons flew by Pluto.

There was no good demonstration data to tune our tools on, which meant that we went in cold and had to write our analysis software on the fly. We were developing new software and refining the speed and sensitivity with which we could handle the data as it streamed down from space.

NH Kuiper Belt object search
One of the first images returned from Hubble of a single New Horizons Kuiper Belt object search field. Credits: STScI/NASA/SwRI

We had to convince energy-conscious building managers to keep the HVAC running late into the night and over the weekends to keep the offices and server rooms at livable temperatures during the summer Colorado heat. In parallel, there was another team on the East coast working to make sure that an independent and redundant pipeline was developed and running. We checked each teams’ performance by placing synthetic KBOs of known brightness in the data and determining how faint they could be before our software stopped finding them reliably.

It was exactly two years ago – on June 28, 2014 – that our search first bore fruit. Marc Buie alerted the Boulder team that he had spotted something in the data, and subsequent analysis by all the involved teams confirmed that it was a Kuiper Belt object. Eventually, this first discovery would be designated 2014 MU69.

We quickly found another Kuiper Belt object, and passed the go-no go. After all was said and done, we found five new extremely faint Kuiper Belt objects in this search data, with three candidates with promising orbits that might make them targetable.

2014 MU69
The discovery sequence of 2014 MU69, cleaned of cosmic rays and other image artifacts. Credits: STScI/NASA/SwRI

The discovery observations alone were enough to suggest that 2014 MU69 might be targetable by New Horizons, but it would take further follow up to confirm it. In August of 2014, a batch of Hubble observations picked up 2014 MU69 again, and with those new observations my analysis of the orbit concluded that it was guaranteed to be targetable given New Horizons’ fuel reserves. Even if no others panned out, we had a world we could reach.

In the end, two of the five candidates withstood the test of subsequent observations. Of those two, it was still the first that we discovered that remained the best candidate, and so it was that 2014 MU69 was selected as the nominal target of a potential New Horizons extended mission.

But just discovering a targetable world was not enough.

Tracking, Targeting, And Understanding A New World

Pluto had been tracked for 85 years—well over a third of its orbital period, before New Horizons arrived. 2014 MU69 lives deeper in the Kuiper Belt than Pluto, and takes nearly 300 years to orbit the sun. We only discovered it two years ago. By the time we fly by it, we will have known about it for only one and a half of one percent of its orbital period. This short baseline of observations means that in order to predict the position of 2014 MU69 with sufficient accuracy and precision to fly a spacecraft by it, we would need exquisitely calibrated observations between now and the flyby.

Since its discovery, we have continued to track 2014 MU69 with Hubble. Once these extremely accurate observations are linked with the extremely precise GAIA astrometric network, we will have an orbit solution for 2014 MU69 that is unparalleled for the period of time that it has been tracked.

From its orbit, we have already learned that 2014 MU69 is a very intriguing kind of Kuiper Belt object. It belongs to the “Cold Classical” Kuiper Belt, a population that appears to be a surviving remnant of the disk of material from which the planets formed. The cold classicals seem to have escaped much of the violent processing that other kinds of minor planets were subject to. This makes 2014 MU69 the clearest window into the era of planet formation that we have ever had the chance to see up close.

The Burn

All of our effort in finding 2014 MU69 opened the door to a potential extended mission for New Horizons. After the Pluto flyby in the summer of 2015, we and the spacecraft and navigation teams designed the largest spacecraft maneuver ever performed beyond Neptune. This maneuver would adjust New Horizons’ course to intersect the orbit of 2014 MU69 on Jan. 1, 2019. It would also be the largest series of engine burns New Horizons had ever attempted.

The maneuvers to do this began in October of 2015, and took several weeks to perform. After it was complete in November, New Horizons had 2014 MU69 in its sights. We were on our way.

The Extended Mission

New Horizons has targeted 2014 MU69, and we have proposed to NASA for an extended mission that would support the flyby of this distant world. This extended mission proposal is still under consideration. If approved, we will not only explore 2014 MU69, we will also study about 20 of the other Kuiper Belt objects that we discovered in our ground- and space-based searches. We won’t approach these worlds nearly as close as 2014 MU69, but New Horizons’ unique vantage point still makes it possible for us to examine them in more detail than is possible with any other facility.

Then, on Jan. 1, 2019, New Horizons will cruise over the surface of 2014 MU69, and the speck that we spotted in Hubble’s images two years ago will turn into a real world before our eyes.

artists concept of 2014 MU69
Artist’s concept of 2014 MU69 during New Horizons’ January 1, 2019 flyby. Credit: Alex Parker



Alex Parker
Alex Parker




New Horizons: Getting to Know a KBO

Today’s post is written by Simon Porter, a New Horizons postdoctoral researcher at the Southwest Research Institute in Boulder, Colorado. Simon’s work focuses on the small satellites of Pluto.

Hi, I’m Simon Porter, a postdoctoral researcher on NASA’s New Horizons mission. In this blog post, I’m going to talk about our observations of the Kuiper Belt object (KBO) called (15810) 1994 JR1, or simply ”JR1,” with the New Horizons spacecraft.

New Horizons flew past Pluto nearly a year ago and has been sailing through the Kuiper Belt ever since. In November 2015 and April 2016, we used the telescopic Long Range Reconnaissance Imager (LORRI) on board New Horizons to take pictures of JR1 as we flew past it. This was our first “distant flyby” of a KBO (about 66 million miles, about as close as Venus is to the sun), and the first-ever distant observation of a KBO from the Kuiper Belt. We were able to get a huge amount of science out of these images, and they may be a preview of things to come as we observe many more KBOs this way, if an extended mission is approved.

We first observed JR1 at the start of November 2015, taking four sets of 10 images, spaced one hour apart. It was even farther away at that time (172 million miles), and because of an error in targeting, it ended up on the side of picture frames instead of in the middle. However, JR1 was visible in all 40 images, dancing slowly across the field of view. In addition, we pointed the Hubble Space Telescope at JR1 in early November, so that it saw JR1 at almost the same times as New Horizons, accounting for the five hours that it took JR1’s light to reach Hubble. This was the longest-baseline parallax observation ever made – another record for New Horizons! –and allowed us to really improve our knowledge of JR1’s orbit.

The four observations of 1994 JR1 that New Horizons made in November 2015. The KBO is the dot in the center, and the stars are moving past in the background. Credits: NASA/JHU APL/SwRI
The four observations of 1994 JR1 that New Horizons made in November 2015. The KBO is the dot in the center, and the stars are moving past in the background. Credits: NASA/JHUAPL/SwRI

With this new orbit in hand, we pointed the spacecraft to image JR1 again this past April 2016. This would be the closest that New Horizons got to JR1, and we commanded the spacecraft to take lots more pictures than we had in November. We started with two “deep” sets of 24 images each, which could be added together to pick out any moons around JR1. We had already looked at JR1 with Hubble and saw no moons, so it was no surprise to find none in the New Horizons images, but it was worth a check. The ghostly circular pupil image and the little dots that are moving around in the image (and that aren’t JR1) are scattered light from a nearby bright star. LORRI isn’t that big of a telescope – just a little bit smaller than an 8-inch Schmidt-Cassegrain an amateur astronomer would use – so it’s easy for scattered light to bounce around inside the telescope and cause artifacts like these.

New Horizons’ “deep” observations of JR1, from April 2016. Credits: NASA/JHUAPL/SwRI
New Horizons’ “deep” observations of JR1, from April 2016. Credits: NASA/JHUAPL/SwRI

The next sets of observations were to see how the brightness of JR1 changed over time. The first was a sequence of nine sets of three images, spaced half an hour apart, while the second was similar, but an hour apart. We got the half-hour sequence down first and were thrilled to see that it looked like a sine wave! If you are looking an elongated object (say, a tennis shoe) on the side and then turn it to look at the front, the apparent size of the object, from your view, will go down. Turn it back to the side and the apparent size goes up again. Now imagine the shoe is a thousand miles away and someone is turning the shoe for you. You wouldn’t see the shape of the shoe change (because it’s just a point of light), but the brightness of the shoe would change because it can reflect more light to you when you see the side than when you see the front. Making measurements like that is called making a lightcurve. When we do that, we see the brightness of asteroids, KBOs and moons change and we can infer what their shape must be, without actually ever having seen them up close.

The second, longer set of images confirmed this variation and allowed us to determine the rotational period of JR1 was 5.47 hours—something that had ever before been measured. That’s pretty fast for a KBO this size, most of which spin at half this speed. Unlike asteroids, the sun is too far from KBOs to spin them up with solar radiation, so KBO spins mostly record the collisions that they have had with other KBOs. Since JR1 is spinning so fast, it probably had a pretty big glancing impact at some time in its distant past.

The lightcurve of JR1. Credits: NASA/JHUAPL/SwRI
The lightcurve of JR1. Credits: NASA/JHUAPL/SwRI

Lightcurves and deep images could be taken with Earth-based telescopes, but what no telescope other than LORRI could do is see a KBO from the side. From the KBO’s perspective, Earth is always a few degrees away from the sun, which means that from Earth we always see KBOs at high noon, with no shadows. From a spacecraft in the Kuiper Belt (like New Horizons), we can look at different times of JR1’s day. The November observations of JR1 were either late morning or early afternoon (we don’t know, because we don’t know if JR1’s pole points up or down). The April observations were at either early morning or in the late evening on JR1. Both of these times should have had shadows on the surface, especially the April observation. Sure enough, when we put all the brightnesses together in a time series, we found that there was enough dimming from shadows that the surface must be at least as rugged as Saturn’s rough-surfaced moon Phoebe. This makes sense, as Phoebe is thought by some to be a captured KBO, and is therefore probably our best guess for what (15810) 1994 JR1 looks like.

The brightness of JR1 from Earth (red and green) and New Horizons (blue). Credits: Porter et al 2015, under review
The brightness of JR1 from Earth (red and green) and New Horizons (blue). Credits: Porter et al 2015, under review


Saturn’s moon Phoebe may be similar to JR1. Credits: NASA/JPL-Caltech/SSI
Saturn’s moon Phoebe may be similar to JR1. Credits: NASA/JPL-Caltech/SSI

Finally, our April observations were the closest-ever of a KBO (other than Pluto), and we used that fact to refine the orbit of JR1. From Earth, we can predict the motion of a KBO as seen from Earth very well, but can’t as well predict how far away it is. Because the New Horizons observations were taken at a very different angle to how the Earth sees JR1, we were able to drop the uncertainty of how far JR1 is from the sun (and thus Earth) from around 60,000 miles (100,000 kilometers) to around 600 miles (just under 1,000 kilometers). That’s a huge improvement in JR1’s orbit, and should enable other astronomers to predict when JR1 will go in front of stars, a measurement we call an “occultation” (from the Latin word for “hidden”). Observing an occultation of JR1 would allow a measurement of both its size and shape.

Having this high-precision orbit in hand also allowed us to make a computer simulation of what JR1’s orbit will do in the future, and did in the past. JR1 is a “plutino” (pseudo-Italian for “little Pluto”) because, like Pluto, it goes around the sun three times for every two times that Neptune goes around the sun. In fact, JR1 is only 2.7 astronomical units (AU) away from Pluto – an AU being the average distance between the sun and Earth, about 93 million miles (or 149 million kilometers) – which is pretty close on outer system scales (it’s 35.5 AU from the sun).  However, the orbits of Pluto and JR1 are different enough that this close encounter is cosmically fleeting, only lasting a few hundred thousand years, and not coming together again for another 2.4 million years. Pluto does have a gravitational effect on the orbit of JR1, but it’s mainly to add a bit of chaos into JR1’s orbit, causing it to be unpredictable over timescales longer than about ten million years (again pretty short, cosmically speaking).

The orbit of JR1 compared to Pluto’s orbit with Pluto perturbing JR1 (red) and without (blue). Credits: Porter et al, 2015, under review
The orbit of JR1 compared to Pluto’s orbit with Pluto perturbing JR1 (red) and without (blue). Credits: Porter et al, 2015, under review

The primary mission of New Horizons will end this year, when it is finished downloading all the data from the Pluto system. NASA is currently deciding whether or not to approve an extended mission for New Horizons to do a close (within 6,000 miles or 10,000 kilometers) flyby of a KBO even smaller than JR1. If approved, this would also enable New Horizons to observe dozen more KBOs in a similar way to JR1.

Rewriting the Playbook on Pluto

Richard Binzel is a professor of planetary science and joint professor of aerospace engineering at the Massachusetts Institute of Technology, as well as a member of the original “Pluto Underground” that struggled for more than two decades to bring a Pluto mission from dream to reality.

Through all the years of planning and conducting the New Horizons mission to Pluto, one thing was certain: we were going to rewrite textbooks based on what we found. And, boy oh boy, Pluto has not disappointed!

Plans are now underway to rewrite the granddaddy textbook of them all, “Pluto and Charon,” a scientific compendium of chapters covering everything known about the Pluto system when the book was published in 1997. I was fortunate to be one of the 50 collaborating authors (practically the entire Pluto community at that time) who came together to publish this volume as part of the Space Science Series of the University of Arizona Press. Planetary scientists Alan Stern (Southwest Research Institute) and David Tholen (University of Hawaii) edited “Pluto and Charon,” which, more than any other work, helped us to set our science objectives for New Horizons.

Book cover Pluto and Charon
“Pluto and Charon,” published in 1997, University of Arizona Press. Credit: Google Books

I’m familiar with Space Science Series textbooks at all levels, having become general editor of the series in 2000 and producing 10 volumes so far. (My predecessor and series founder, the late Tom Gehrels, prolifically produced 30 volumes.) These books are not for the faint of heart! Each is written for the level of a beginning graduate student who has completed at least a bachelor’s degree in physics, chemistry, planetary science or other intersecting field. My job as general editor is to carefully select the individual book editors and challenge them and their chapter authors to write what we know, how we know it, and where we are going in the future.

As a member of the New Horizons team, I am pleased that we are able to announce a new Space Science Series book, “Pluto After New Horizons” (as we are informally calling this sequel), that will begin taking shape in 2018 with a target publication date in 2020. That may seem like a ways in the future, but to those of us trying to make sense of all that the New Horizons data are telling us, that date seems to be coming way too fast. Mission Principal Investigator Alan Stern will again head the editing team and I will be joining him, with additional editor slots to be named later.

The challenge to construct “Pluto after New Horizons” is daunting. We have to discern and decode, as best we can, what the massive returned data set is telling us. In fewer than 30 chapters we have to cover topics ranging from the interior of Pluto and its surface processes, to its atmosphere and its near-space environment. And we can’t ignore Pluto’s largest moon, Charon, and the system of smaller satellites Styx, Nix, Kerberos and Hydra, who each need their story told.

With no mission to Pluto in the immediate forecast, the foundation of knowledge we build into this book will probably reign for decades. And just as “Pluto and Charon” in 1997 was the scientific foundation upon which mission plans were built with New Horizons as the capstone, we hope to make “Pluto After New Horizons” a textbook that lays the cornerstone for what will become the next era of Pluto spacecraft exploration.

Richard Binzel and Alan Stern with the 1997 book “Pluto and Charon,”
Richard Binzel (left) and New Horizons Principal Investigator Alan Stern with the 1997 book “Pluto and Charon,” which the mission team used more than any other text to form New Horizons’ science objectives. Plans are in the works for a sequel, tentatively titled “Pluto after New Horizons,” that would set the stage for the next generation of Pluto explorers. Credits: SwRI/Cindy Conrad

Processing Pluto’s Pictures

This week’s blog comes from Tod Lauer, a research astrophysicist at the National Optical Astronomy Observatory in Tucson, Arizona.

New Horizons Principal Investigator: “Lauer! We’ve got to have full resolution! Now!”

Me: “I’m pushing the images as hard as I can – any more and the pixels will blow apart for sure!”

Okay, the New Horizons Pluto encounter didn’t quite play out that way, but the science team really did want to get the most out of all the images of Pluto and its moons that we could, and often, as quickly as we could. I’m Tod Lauer, an astrophysicist who mainly works on stuff far beyond our galaxy. But I also love tough imaging challenges, and I enjoyed working with New Horizons as a sort-of utility image-processing engineer.

A few summers ago I wrote to New Horizons Project Scientist Hal Weaver on a whim to ask about the search for hazards to the spacecraft as it entered Plutonian space. Hal kindly replied with a note describing the capabilities of the New Horizons spacecraft and a report describing the search in detail. New Horizons co-investigator John Spencer, who was leading the hazard detection effort, also joined in. I was incredibly intrigued by the task: Search for unknown faint sources close to Pluto, which was embedded in an incredibly crowded field of stars (the heart of the Milky Way!), using heavily compressed images with the optical blur-pattern of the camera varying significantly from exposure to exposure – all on a critical timeline. I offered one approach, which led to me joining the “Crow’s Nest” crew that John and Hal assembled to search for hazards in the distant-encounter images. This work in turn led to an opportunity for me to help out with the encounter images as well.

Pluto's moons
In these simulated images from New Horizons’ Long-Range Reconnaissance Imager (LORRI), I demonstrated an approach to the hazard search. The image on the left (prepared by New Horizons’ John Spencer) shows Pluto and Charon greatly over-exposed to capture faint moons hiding among the heavily crowded background of Milky Way stars. The image at right shows a model of the fixed stars subtracted to reveal the four known small satellites of Pluto. This approach worked extremely well for the actual search. Credits: NASA/JHUAPL/SwRI

One task was getting the best resolution out of the images. Starting in April 2015, I worked to get the first glimpses of detail on Pluto and Charon as New Horizons’ long cruise across interplanetary space transitioned into the flyby itself. This continued up to closest approach and beyond as the images came back to Earth after the flyby. This work started with weaving a set of images of an object into a master image that preserved all the fine structure scattered about the image set.

At left, a LORRI image of Pluto taken July 12, 2015, two days before closest approach. The image at right and others taken at the same time were combined as single image with a 2x-finer pixel scale and corrected for blurring to reveal many more details. Credits: NASA/JHUAPL/SwRI

The next step was to correct for the blurring due to the New Horizons optics. The final step required the greatest care – satisfying my fellow scientists on the team that they could trust the results for their research! The main objective was not to leave anything on the plate: It took hundreds of people working for two decades to get to Pluto, and it may be a while before we get back there. Every drop of information we can squeeze out of the images is immensely valuable.

LORRI images of Pluto's moon
The process in action, from left: Picture A is one of a set of four LORRI images of Pluto’s small moon Kerberos; in B, the four images have been combined to produce a 2x-finer finer pixel scale; C is the combined image corrected for blurring; and D has been interpolated to remove the blocky appearance and reveal new details about Pluto’s moon Kerberos. Credits: NASA/JHUAPL/SwRI

Another problem, which might seem surprising for a mission to Pluto, was dealing with the brilliant glare of the distant sun. On the way out to Pluto we had the sun to our back, while after close approach, we turned around to look at the night sides of Charon (and later Pluto), which had New Horizons’ cameras looking almost right back into the sun. Sunlight scattered into the camera strongly washed out the darkened hemisphere. The trick was to use a technique to capture how the scattered sunlight varied over a large collection of images, providing a way to build a perfect model of it for any image. With the sun canceled out we could see the night side of Charon softly lit up by “Plutoshine.”

Dark side of Pluto
At left is one of more than 200 LORRI images obtained to image the dark side of Charon by “Plutoshine;” the bright striations are sunlight scattered into the camera. At right, after all of the images are combined and corrected for the scattered light—Charon’s crescent and nightside are revealed! Credits: NASA/JHUAPL/SwRI

The best part of my experience with the New Horizons team was watching everyone work together to make the encounter a fantastic success. The hazard search concluded two weeks before the flyby, and having found nothing in our way, we stayed on our original, planned course to the Pluto system. From then on the tempo and energy level steadily rose as we flew ever closer to Pluto. For this astrophysicist, it was a treat to see the immense and diverse skills of the New Horizons team for planetary exploration brought to bear. If New Horizons were a ship, the team was its crew, with everyone smartly working at their stations but always keeping an eye on the big picture. Each of us used our talents in a unique way. No one wanted us to miss anything.

Tod Lauer
Tod Lauer
Credit: John Spencer