NASA’s PUNCH Mission Touches the Sun with ‘Solar Stones’

Humans have been watching the Sun and stars for millennia, using the tools they had available to record naked-eye observations. Sky-watching is generally a practice for the sighted — but it can now be a multisensory experience.

Students at the Alliance for Technology, Learning and Society (ATLAS) Institute at the University of Colorado Boulder are collaborating with NASA’s Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission and the Colorado Center for the Blind to develop tactile representations of two ancient petroglyphs (rock carvings).

The students then created an exhibit titled “Solar Stones.” In this video, the student creators describe the inspiration for the “Solar Stones” project and explain the design and construction process.

The “Solar Stones,” exhibit displays two petroglyphs found in Chaco Culture National Historical Park located in northwestern New Mexico.  One has peculiar curlicues emanating in all directions from a central disk, and the other is a spiral. The curlicue petroglyph is believed to represent the total solar eclipse that occurred on July 11, 1097. A large swirl in the upper left of the petroglyph could represent an eruption from the Sun. This petroglyph holds importance as some astronomers hypothesize this is the first known representation of a solar storm in the Sun’s outermost layer, called the corona. The other petroglyph is around the corner from the curlicue petroglyph and marks a place to stand to observe and predict sunrises before and after the summer solstice — a culturally important time of year for ancient and contemporary Puebloan people.

Two light-brown square presentations of petroglyphs sit on a brown table on the bottom of the image. To the left are two off-white rubber molds for the tactile representations. At the top of the image are two white, square petroglyph representations.
These tactile representations, or sensory tablets, of two petroglyphs that astronomers say represent where to stand to observe and predict sunrises (lower left) and a total solar eclipse (lower right) found in the Chaco Canyon National Monument in New Mexico. Credit: Kai Hughes/ATLAS Institute at University of Colorado Boulder

“My team really wanted to work on this project because space is normally such a visual medium and experience, but what if you can’t see? How do you supplement that knowledge in an impactful way?” said Kai Hughes, an ATLAS student working on the project. “We thought it would be really helpful to combine history, space science, and accessibility to create tactile versions of these petroglyphs related to ancient astronomy that open doors to people with low or no vision.”

“This project is important to me because I was never a traditional learner,” said Caileigh Hudson, another ATLAS student on the project. “This is a great way to teach people about heliophysics through touch, which is different from the traditional learning we see in schools.”

What Is the PUNCH Mission?

Four black and blue spacecraft hover at the bottom of the image, above Earth. The spacecraft are pointing towards a yellow, orange, and white solar flare erupting from a white and yellow Sun. The sky background is a mixture of black with bands of red, purple, blue, and light green to represent aurorae.
An artist’s concept shows the four satellites of NASA’s PUNCH mission observing the Sun’s outer atmosphere, the corona. Credit: Southwest Research Institute

Scheduled to launch in early 2025, NASA’s PUNCH mission includes four satellites that will study the Sun’s corona and how material in the corona accelerates to become the solar wind that fills the solar system. The satellites will be in low Earth orbit and will produce continuous 3D images of the solar wind and solar storms as it travels from the Sun to Earth.

The PUNCH mission is also dedicated to outreach and student collaboration projects, such as this Solar Stones project. PUNCH’s outreach program is implementing the theme of ancient and modern Sun-watching, which shows how NASA’s exploration of the Sun is a natural extension of humanity’s age-old dedication to observing and predicting the Sun’s behavior.

“Our outreach theme enables us to make NASA heliophysics more personally and culturally relevant to a much broader diversity of people,” said Cherilynn Morrow, outreach director for the PUNCH mission. “This includes our Native American and blind collaborators who work with us to make enriching outreach products like the 3D petroglyph models that are beneficial to everyone.”

The PUNCH mission collaborates with four planetariums and science centers, plus other multicultural partners in the Four Corners region of the U.S. (Colorado, New Mexico, Utah, and Arizona) to enact the outreach program. More information can be found on the PUNCH mission website.

PUNCH is led by Southwest Research Institute’s office in Boulder, Colorado. The mission is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. Southwest Research Institute will build the Wide Field Imagers for the spacecraft and will build and operate PUNCH. The Naval Research Laboratory in Washington will build the Narrow Field Imagers for the spacecraft and provide optical testing. Rutherford Appleton Laboratory Space in the United Kingdom will provide detectors and calibration for the mission.

By Desiree Apodaca
NASA’s Goddard Space Flight Center, Greenbelt, Md. 

Video Caption: In collaboration with NASA’s PUNCH mission and the Colorado School for the Deaf and Blind, Creative Technology and Design, students at the ATLAS Institute at University of Colorado Boulder have developed tactile representations of what many scholars believe to be the earliest known record of solar observations.
Music Credit: “Glass Eyes” by Evan William Conway [ASCAP] via Universal Production Music
Video credit: Beth Anthony/NASA’s Goddard Space Flight Center

PUNCH Announces Rideshare with SPHEREx and New Launch Date

Editor’s Note: As of October 2024, the current launch timeline for the PUNCH mission is no later than April 2025. For the latest information about PUNCH’s launch, please visit science.nasa.gov/mission/punch.

NASA’s Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission will share a ride to space with NASA’s Jet Propulsion Laboratory’s Spectro-Photometer for the History of the Universe, Epoch of Re-ionization, and Ices Explorer (SPHEREx) mission. The missions will launch no earlier than April 2025 on a SpaceX Falcon 9.

“It’s great to have a definite launch date and vehicle, and we’re looking forward to working with the SPHEREx team as we `carpool’ to orbit,” said Craig DeForest, PUNCH principal investigator at Southwest Research Institute in Boulder, Colorado. “Rideshares are a great way to save money by taking better advantage of each rocket’s capability.”

A red Sun shoots off a coronal mass ejection. Below the ejection, Earth is shown to scale. This shows that the coronal mass ejection is many times larger than the Earth.
In this image, Earth is shown to scale with a coronal mass ejection that occurred on August 31, 2012. While Earth’s size is shown to scale, its distance is not (Earth is much farther from the Sun than shown here). Credits: NASA/Goddard Space Flight Center

The contract with SpaceX was updated to include PUNCH and was awarded July 14, 2022. The PUNCH team was able to adjust its schedule to meet the new launch date of no earlier than April 2025 and used this new schedule flexibility to mitigate some schedule constraints due to supply chain challenges.

PUNCH, which consists of four suitcase-sized satellites, will focus on the Sun’s outer atmosphere (the corona) and how it generates the solar wind. The spacecraft also will track coronal mass ejections – large eruptions of solar material that can drive large space weather events near Earth – to better understand their evolution and develop new techniques for predicting such eruptions.

The four satellites will spread out around Earth along the day-night line, which enables it to create a continuous, complete, view of the corona and inner solar system. Three of the PUNCH satellites will carry identical Wide Field Imagers, which, together, image the corona and solar wind over a 90-degree field of view (out to 45 degrees away from the Sun). In skywatching terms, 90 degrees covers the part of the sky from the horizon to the point directly overhead. The fourth PUNCH satellite carries a Narrow Field Imager coronagraph, which will study regions closest to the Sun. All four cameras will be synchronized in flight, so that the mission science team can combine their images seamlessly into a single large field of view.

PUNCH is led by Southwest Research Institute’s office in Boulder, Colorado. The mission is managed by Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, which is managed by Goddard for NASA’s Science Mission Directorate in Washington. Southwest Research Institute will build the Wide Field Imagers and will build and operate PUNCH. The Naval Research Laboratory in Washington will build the Narrow Field Imagers and provide optical testing. RAL Space in the United Kingdom will provide detectors and calibration for the mission.

NASA’s PUNCH Mission to Study the Sun’s Environment Moves Toward Launch

NASA’s PUNCH mission – short for Polarimeter to Unify the Corona and Heliosphere – passed a mission review on July 23, 2021, moving the mission into its next phase with a new target launch readiness date of October 2023.

“With PUNCH we will finally be able to see directly the connection between the star at the center of our solar system, and the solar wind that immerses our planet and gives rise to space weather here on Earth,” said Dr. Craig DeForest, PUNCH principal investigator at Southwest Research Institute, in Boulder, Colorado. “To do that, we are building four cameras to photograph the very faint rays of sunlight that are reflected off of free electrons in interplanetary space.”

coronagraph image showing solar wind streaming away from Sun
Processed data from NASA’s Solar Terrestrial Relations Observatory shows the Sun’s outer atmosphere, the corona, as it streams outward and becomes the solar wind. The upcoming PUNCH mission will study this transition and how the solar wind and transients evolve through the inner solar system. Credit: Craig DeForest, SwRI

The review, Key Decision Point C, evaluated the mission’s preliminary design and program plan to achieve launch by its target launch readiness date. With the successful review, PUNCH now moves into phase C, which includes the final design of the mission and building the instruments. The four spacecraft will then go through final assembly and testing before their launch readiness date of October 2023. This phase of the mission also marks the start of the PUNCH Outreach Program. PUNCH scientists will collaborate with five planetariums and science centers, plus other cross-cultural partners, to activate an ancient and modern Sun-watching theme that will engage historically marginalized populations.

PUNCH will consist of four suitcase-sized satellites that will study the Sun’s outer atmosphere, the corona, and how the corona accelerates to become the solar wind that fills the solar system. With images in unprecedented detail, PUNCH’s measurements will bridge a long-standing gap between remote images of the corona and solar wind and direct in situ measurements of the solar wind. PUNCH will also provide brand-new 3D information about this region, by taking advantage of the way light scatters off electrons here. PUNCH’s data will allow scientists to answer questions about how the Sun’s atmosphere becomes the solar wind that fills the solar system, as well as how structures in the solar wind are created, and how large magnetic explosions called coronal mass ejections propagate through the solar system. Such information can shed new light on how the Sun drives a vast system of space weather across the solar system, which can affect astronauts and technology on Earth and in space.

Animation of the the Sun's corona and solar wind in line drawing format
Animation (not to scale) showing the Sun’s corona and solar wind.
Credits: NASA’s Goddard Space Flight Center/Lisa Poje

“Here on Earth, we can see the Sun’s corona during a total solar eclipse. By creating an artificial eclipse, PUNCH will continuously image the upper corona, solar wind, and track coronal mass ejections, with extraordinary detail and coverage,” said Dr. Nicholeen Viall, PUNCH mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The four PUNCH satellites will spread out around Earth along the day-night line to create a complete view of the corona and solar wind. Three of the PUNCH satellites will carry identical Wide Field Imagers, which, together, image the corona and solar wind out to 45 degrees away from the Sun. (In skywatching terms, 90 degrees covers the part of the sky from the horizon to the point directly overhead.) The fourth PUNCH satellite carries a Narrow Field Imager, which will study regions closest to the Sun. All four cameras will be synchronized in flight, so that the mission science team can combine their images seamlessly into a single large field of view.

“PUNCH is an exciting mission that will give heliophysicists around the world a new view of the Sun’s connection to space,” said Dr. Lika Guhathakurta, PUNCH program scientist at NASA Headquarters in Washington, D.C. “PUNCH’s observations from new vantage points – in addition to our existing fleet of spacecraft – will greatly complement and enhance the scientific understanding of the Sun and its connection to Earth and space.”

PUNCH is led by Southwest Research Institute’s Boulder, Colorado, office. The mission is managed by Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, which is managed by Goddard for NASA’s Science Mission Directorate in Washington, D.C. Southwest Research Institute will build the Wide Field Imagers and will build and operate PUNCH. The Naval Research Laboratory in Washington will build the Narrow Field Imagers and provide optical testing. RAL Space in the United Kingdom will provide detectors and calibration for the mission.

By Sarah Frazier
NASA’s Goddard Space Flight Center, Greenbelt, Md.

NASA’s PUNCH Mission Moves Towards Launch in 2023

Following a successful System Requirements Review/Mission Definition Review on April 6, 2020, the target launch readiness timeframe for NASA’s PUNCH mission — short for Polarimeter to Unify the Corona and Heliosphere — has been moved from August 2022 to 2023 to accommodate the mission selection timeline.

PUNCH is led by Southwest Research Institute’s Boulder, Colorado, office. The mission is managed by Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, which is managed by Goddard for NASA’s Science Mission Directorate in Washington.