Two CubeSats Set to Launch on ELaNa 39 Mission

Virgin Orbit's LauncherOne rocket is attached to the underside of the company's Cosmic Girl aircraft.
Virgin Orbit’s LauncherOne rocket is attached to the underside of the company’s Cosmic Girl – a Boeing 747-400 carrier aircraft – at the Mojave Air and Space Port in California. LauncherOne is carrying two small satellites, or CubeSats, for NASA’s ELaNa 39 mission. Photo credit: Virgin Orbit

Two small NASA-sponsored research satellites, or CubeSats, are preparing to launch on Virgin Orbit’s LauncherOne rocket as part of the agency’s Educational Launch of Nanosatellites (ELaNa) 39 mission. The rocket, attached to the underside of the company’s Cosmic Girl aircraft, will be air launched when the 747-aircraft reaches its specified altitude over the Pacific Ocean. Takeoff is currently scheduled for June 29, 2022, from the Mojave Air and Space Port in California.

An up-close view of Virgin Orbit's LauncherOne rocket.
Seen here is an up-close view of Virgin Orbit’s LauncherOne rocket attached to the underside of the company’s Cosmic Girl aircraft at the Mojave Air and Space Port in California. Photo credit: Virgin Orbit

Once LauncherOne is released from Cosmic Girl, the rocket’s NewtonThree first stage engine will ignite to start the launch sequence that will send the CubeSats into low-Earth orbit.

The two satellites comprising ELaNa 39 are NASA Langley Research Center’s GPX2 and the University of Colorado at Boulder’s Compact Total Irradiance Monitor-Flight Demonstration, or CTIM-FD. They were selected through NASA’s CubeSat Launch Initiative (CSLI) – a NASA effort to provide U.S. educational institutions, informal educational institutions such as museums and science centers, nonprofits with an education/outreach component, and NASA centers with low-cost access to space.

Langley’s GPX2 will use commercial-off-the-shelf differential global positioning systems to demonstrate autonomous, close-proximity operations for small satellites in orbit, such as flying in formation or docking. If successful, this could help reduce costs and greatly simplify in-orbit operations.

CTIM-FD will spend one year in orbit, measuring total solar irradiance (TSI) – data that describes the amount of incident solar radiation that reaches the Earth from the Sun. These levels impact local weather conditions as well as global climate change. The flight demonstration will show whether small satellites are as effective at measuring TSI as the larger, space-based remote sensors in use currently.

For more information about NASA’s CSLI, visit:

Weather 40% Favorable for Today’s Launch at Start of Launch Window

Astra Rocket 3 with TROPICS 1 payload
Astra’s Rocket 3, with NASA’s TROPICS CubeSats, is shown on June 1, 2022, at Space Launch Complex 46 at Cape Canaveral Space Force Station, Florida, in preparation for a June 12, 2022, launch.

Weather officials with Cape Canaveral Space Force Station’s 45th Weather Squadron predict a 40% chance of favorable weather conditions at noon, the start of today’s launch window, with the forecast dropping to 10 percent favorable later in the afternoon.

The primary weather concern at the start of the launch window is a Cumulus Cloud Rule violation. Later in the launch window, concerns include Surface Electric Fields and Lightning rules.

TROPICS mission aims to improve observations of tropical cyclones. Six TROPICS satellites will work in concert to provide microwave observations of a storm’s precipitation, temperature, and humidity as often as every 50 minutes.

Welcome to Launch Day for TROPICS

Astra Rocket 3 with TROPICS payloadLaunch day has arrived for NASA’s commercial partner Astra. A pair of small satellites wait atop Astra’s Rocket 3 for liftoff from Space Launch Complex 46 at Cape Canaveral Space Force Station in Florida. This mission will send two-shoebox sized CubeSats to low-Earth orbit. A two-hour launch window opens at noon EDT.

This is the first of three planned launches for NASA’s Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission. Together the three launches will attempt to place six satellites in three different orbital planes to study the formation and development of tropical cyclones, making observations more often than what is possible with current weather satellites. The six TROPICS satellites will join the TROPICS Pathfinder satellite, which is already in orbit.

The six TROPICS satellites will maximize their time over the part of the Earth where tropical cyclones form and will work in concert to improve observations of tropical cyclones. The spread of the satellites means that a satellite should pass over any spot in an area stretching from the Mid-Atlantic region of the United States to the southern coast of Australia about once an hour. TROPICS will provide data on temperature, precipitation, water vapor, and cloud ice by measuring microwave frequencies, providing insight into storm formation and intensification. This new data, coupled with information collected from other weather satellites, will increase understanding of tropical cyclones and improve forecasting models.

Follow launch updates on this blog and stay connected with the mission on social media.

Twitter:  @NASA_LSP, @NASAEarth, @NASAKennedy, @NASA, @Astra
Facebook: NASA