Communications Achieved for NASA’s Four Starling CubeSats

Mission managers have established command communications with all four of NASA’s Starling CubeSats! The spacecraft are progressing through payload and propulsion tests, the final stage of a pre-operations checklist called commissioning.

The Starling spacecraft – which project team members nicknamed Blinky, Pinky, Inky, and Clyde – are part of an ambitious test to develop self-coordinating robotic swarms for space research and exploration.

Progress so far has been as expected for three of the four spacecraft – Pinky, Inky, and Clyde. An initial communication issue with Blinky was addressed by updating estimates of its orbital position and instructing the satellite to better align its antennas with ground station receivers. Operators have achieved operational two-way communications with all Starling units and are still investigating the root cause of the issue.

In addition, data analysis of Blinky’s onboard attitude control system, which manages the spacecraft’s orientation, showed that it was having to work to counteract a disturbance. Initial troubleshooting suggested this was likely connected to a propulsion system leak, which was subsequently remediated. Operators are working to better understand the issue and how it might impact the mission.

After this final stage of commissioning, the Starling spacecraft will begin a procedure called a “drift arrest maneuver,” adjusting the orbital positions of each craft to bring them into proper alignment to begin testing swarm activities.

Follow this blog for updates and stay connected with the mission on social media:

Twitter: @NASAAmes@NASA
Facebook: NASA AmesNASA
Instagram: @NASAAmes, @NASA

NASA’s Ames Research Center in California’s Silicon Valley leads the Starling project. NASA’s Small Spacecraft Technology program, based at Ames and within NASA’s Space Technology Mission Directorate (STMD), funds and manages the Starling mission. Blue Canyon Technologies designed and manufactured the spacecraft buses and is providing mission operations support. Rocket Lab USA, Inc. provides launch and integration services. Partners supporting Starling’s payload experiments include Stanford University’s Space Rendezvous Lab in Stanford, California, Emergent Space Technologies of Laurel, Maryland, CesiumAstro of Austin, Texas, L3Harris Technologies, Inc., of Melbourne, Florida, and NASA Ames – with funding support by NASA’s Game Changing Development program within STMD.

NASA’s Starling Commissioning Begins, Team Works to Bolster Comms

Each of NASA’s four Starling spacecraft stabilized themselves, deployed solar panels, and made initial contact shortly after their July 17 launch. Starling operators report nominal health for all the CubeSats.

The spacecraft are undergoing a series of preparation and testing activities, called commissioning, ahead of their mission to demonstrate autonomous communications, positioning, maneuvering, and decision-making capabilities. Starling’s commissioning phase includes three stages: spacecraft bus commissioning, payload commissioning, and propulsion system commissioning.

Three of Starling’s four CubeSats have completed spacecraft bus commissioning ahead of schedule. As of July 21, the mission team continues working to establish robust two-way communications with the fourth spacecraft so that it can join its fellow CubeSats in the next stage of commissioning. 

Follow Starling updates here and on the NASA Ames homepage, and stay connected with the mission on social media.

Twitter: @NASAAmes@NASA
Facebook: NASA AmesNASA
Instagram: @NASAAmes, @NASA

Starling is funded by NASA’s Small Spacecraft Technology program based at NASA’s Ames Research Center in California’s Silicon Valley and within the agency’s Space Technology Mission Directorate in Washington.

Starling CubeSats Have Deployed

NASA’s four Starling CubeSats are confirmed to have deployed from the Rocket Lab’s Electron kick stage. The spacecraft, which are designed to work together as a “swarm,” have reached low Earth orbit to begin their mission to test technologies for autonomous positioning, networking, maneuvering, and decision-making.

Now, the Starling swarm will power up and attempt initial contact with the ground; a process that may occur overnight or in the next several days.

For updates, follow us on social media:  

Twitter: @NASAAmes@NASA
Facebook: NASA AmesNASA
Instagram: @NASAAmes, @NASA

Starling is funded by NASA’s Small Spacecraft Technology program based at NASA’s Ames Research Center in California’s Silicon Valley and within the agency’s Space Technology Mission Directorate in Washington.

Starling: We Have Liftoff!

NASA’s Starling mission, has lifted off from the launch pad aboard Rocket Lab’s Electron rocket. The four CubeSats are on their way to low Earth orbit to test new autonomous spacecraft swarm technologies.

Rocket Lab is providing a live launch broadcast, available on the company’s website.

Connect with us on social media for ongoing launch updates:

Twitter: @NASAAmes@NASA@RocketLab
Facebook: NASA AmesNASARocketLabUSA
Instagram: @NASAAmes, @NASA, @RocketLabUSA

Starling is funded by NASA’s Small Spacecraft Technology program based at NASA’s Ames Research Center in California’s Silicon Valley and within the agency’s Space Technology Mission Directorate in Washington.

It’s Launch Day for NASA’s Starling Mission!

Welcome to launch day for NASA’s Starling CubeSat mission! A team of four satellites wait atop a Rocket Lab Electron rocket for liftoff from Launch Complex 1 in Māhia, New Zealand. This launch, named Baby Come Back, will send Starling’s cereal box-sized satellites, called CubeSats, to low Earth orbit, where they will test new autonomous spacecraft swarm technologies.

A two-hour launch window opens at 7:30 p.m. EDT (11:30 a.m. Tuesday, July 18, New Zealand Standard Time). Rocket Lab is providing a live launch broadcast, available on the company’s website approximately 20 minutes before launch.

Today’s launch aims to deploy the four Starling CubeSats more than 300 miles above Earth. Following commissioning, the spacecraft will demonstrate maneuver planning, communications networking, relative navigation, and autonomous coordinated science measurements, all with minimal intervention from operators on the ground.

This ambitious test is an important step in advancing self-coordinating robotic swarms for future science and exploration missions to the Moon, Mars, and deep space.  Projects like the upcoming HelioSwarm mission, which will launch nine spacecraft to study the Sun like never before, will benefit from lessons learned from Starling.

Here’s a look at some of today’s upcoming milestones. All times are approximate:

  • -00:02:00 Launch autosequence begins
  • -00:00:02 Rutherford engines ignite
  • 00:00:00 Lift-off
  • 00:01:00 Vehicle Supersonic
  • 00:01:11 Max-Q
  • +00:02:24 Main Engine Cut Off (MECO) on Electron’s first stage
  • +00:02:27 Stage 1 separates from Stage 2
  • +00:02:31 Electron’s Stage 2 Rutherford engine ignites
  • +00:03:03 Fairing separation
  • +00:04:07 Stage 1 apogee
  • +00:07:23 Stage 1 drogue parachute deployment
  • +00:07:38 Stage 1 is subsonic
  • +00:08:13 Stage 1 main parachute deployment
  • +00:08:59 Second Engine Cut Off (SECO) on Stage 2
  • +00:09:09 Stage 2 separation from Kick Stage
  • +00:15:15- +00:17:43- Splashdown predicted to occur between
  • +00:46:27 Kick Stage Curie engine ignition (1)
  • +00:48:39 Curie engine Cut Off (1)
  • +00:49:14 NASA Starling 1 Deploys
  • +00:49:44 NASA Starling 2 Deploys
  • +00:50:14 NASA Starling 3 Deploys
  • +00:50:44 NASA Starling 4 Deploys

Follow launch updates on this blog and stay connected with the mission on social media:

Twitter: @NASAAmes@NASA@RocketLab
Facebook: NASA AmesNASARocketLabUSA
Instagram: @NASAAmes, @NASA, @RocketLabUSA

Ames leads the Starling project. NASA’s Small Spacecraft Technology program, based at Ames and within NASA’s Space Technology Mission Directorate (STMD), funds and manages the Starling mission. Blue Canyon Technologies designed and manufactured the spacecraft buses and is providing mission operations support. Rocket Lab USA, Inc. provides launch and integration services. Partners supporting Starling’s payload experiments include Stanford University’s Space Rendezvous Lab in Stanford, California, Emergent Space Technologies of Laurel, Maryland, CesiumAstro of Austin, Texas, L3Harris Technologies, Inc., of Melbourne, Florida, and Ames – with funding support by NASA’s Game Changing Development program within STMD.

Go For Launch!

The team has just called out Go for Launch, and the Electron rocket should blast off in about 10 minutes.

Live Coverage of Today’s Launch Now Airing

Live coverage has begun for the first of two launches of NASA’s TROPICS mission. Rocket Lab is targeting 9 p.m. EDT (1 p.m. Monday, May 8, New Zealand Standard Time) for the launch of Rocket Like A Hurricane, the company’s Electron rocket that will send a pair of CubeSats to low Earth-Orbit.

Watch the broadcast here.

Welcome to Launch Day for NASA’s TROPICS

It’s launch day for NASA’s TROPICS (Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats) mission! A pair of small satellites wait atop a Rocket Lab Electron rocket for liftoff from Launch Complex 1 in Māhia, New Zealand. This launch, named Rocket Like A Hurricane, is the first of two planned launches, each sending a pair of shoebox-sized satellites, called CubeSats, to low-Earth orbit, where they will more frequently collect data to help increase understanding of these deadly storms and improve tropical cyclone forecasts complementing other NASA and partner satellites, including the Global Precipitation Measurement (GPM) Mission and the Suomi National Polar-orbiting Partnership (Suomi NPP).

A two-hour launch window opens at 9 p.m. EDT Sunday, May 7, (1 p.m. Monday, May 8, New Zealand Standard Time).

Together the two launches will attempt to place four CubeSats in two equally spaced orbital planes, so they are spread over the globe for optimal coverage. The CubeSats will study the formation and development of tropical cyclones, known as hurricanes in the Atlantic and typhoons in the West Pacific. The full TROPICS constellation will make observations more often than what is possible with current weather satellites. When they reach orbit, these TROPICS satellites will join the TROPICS Pathfinder satellite which is already in orbit.

All four TROPICS satellites need to be deployed into their operational orbit within a 60-day period. The TROPICS satellites will cover the part of the Earth where tropical cyclones form and will work in concert to improve observations of the powerful storms. The distribution of the satellites means that one should pass over any spot in an area stretching from the Mid-Atlantic region of the United States to the southern coast of Australia about once an hour. TROPICS will provide data on temperature, precipitation, water vapor, and clouds by measuring microwave frequencies, providing insight into storm formation and intensification. This new data, coupled with information collected from other weather satellites, will increase understanding of tropical cyclones, and should improve forecasting models.

Follow launch updates on this blog and stay connected with the mission on social media.

Twitter: @NASA_LSP, @NASAEarth, @NASAKennedy, @NASA, @RocketLab
Facebook: NASA, NASA LSP, RocketLabUSA
Instagram: @NASA, @NASAEarth, @RocketLabUSA

Team Continues to Troubleshoot Propulsion for NASA’s Lunar Flashlight

NASA’s Lunar Flashlight operations team continues to work on remedying the CubeSat’s underperforming propulsion system. They developed a method to get one of the CubeSat’s four thrusters to deliver more thrust; however, the small spacecraft will need additional, more consistent thrust in the next few days to reach its revised target orbit.

Devised by team members at NASA’s Jet Propulsion Laboratory in Southern California, Georgia Tech, and the agency’s Marshall Space Flight Center in Huntsville, Alabama, the new method involves trying to clear the thruster fuel lines of suspected obstructions by increasing fuel pump pressure far beyond the system’s operational limit while opening and closing the system’s valves. After some improvement with one spacecraft thruster, the team is now attempting this method on the other three thrusters. This has resulted in limited success, with the remaining thrusters inconsistently producing some increased levels of thrust.

The CubeSat is currently beyond the Moon’s orbit, more than half a million miles from Earth and looping back toward our planet. To carry out monthly flybys of the lunar South Pole to look for surface ice inside permanently shadowed craters, the team needs to nudge Lunar Flashlight into a trajectory that will allow it to arrive in the required Earth-Moon orbit. They need more reliable thrust for the next few days to achieve that goal.

The mission’s miniaturized propulsion system is a technology demonstration that has never been flown in space before. Technology demonstrations are high-risk, high-reward endeavors intended to push the frontiers of space technology. The lessons learned from these challenges will help to inform future missions that advance this technology.

The other systems aboard Lunar Flashlight continue to perform well.

Lunar Flashlight is funded by the Small Spacecraft Technology program based at NASA’s Ames Research Center in Silicon Valley and within NASA’s Space Technology Mission Directorate.

NASA Selects University Nanosatellite Program Summer Series Winners

A pair of students install a solar array panel during the flight assembly of LightCube.
A pair of students from Arizona State University install a solar array panel during the flight assembly of LightCube. From left to right: David Ordaz Perez and Chandler Hutchens. Image courtesy of Jaime Sanchez de la Vega.

NASA’s CubeSat Launch Initiative (CSLI) has partnered with the U.S. Air Force and U.S. Space Force to select eight schools for the University Nanosatellite Program (UNP) Mission Concepts-1: 2023 Summer Series. Running from May through August, the program provides students with systems engineering training, preparing them to work in the space industry while simultaneously enhancing small satellite expertise among faculty at U.S. universities.

A total of 21 universities applied for this year’s UNP Mission Concepts-1 Summer Series. Proposals were reviewed by a mix of NASA, Air Force, and contractor personnel who selected universities based on the educational impact, university program impact/development, minority outreach/support, and NASA/Department of Defense relevance. This year’s selections are:

  • Florida Institute of Technology – Melbourne, Florida
  • University of the Virgin Islands – U.S. Virgin Islands
  • University of South Florida – Tampa, Florida
  • University of New Mexico – Albuquerque, New Mexico
  • Missouri University of Science and Technology – Rolla, Missouri
  • New Mexico State University – Las Cruces, New Mexico
  • Columbia University – New York City, New York
  • Tarleton State University – Stephenville, Texas

Of this year’s awardees, one is a historically Black university, marking the first time a Historically Black College or University (HBCU) has won a UNP competition and the second time in 12 years a HBCU has won a CSLI competition. Two other awardees are Hispanic serving institutions. The teams will meet at NASA’s Kennedy Space Center in Florida for a two-day kickoff meeting in May, followed by a month-long stay at the Air Force’s UNP facilities in Albuquerque, New Mexico in June, where four students will be hired as interns with the Space Dynamics Laboratory.

After spending one month in New Mexico, they will return to their university for the following month where throughout the summer they and other participating students will take part in educational workshops and exercises. The students will be seated near SmallSats experts for continuous feedback and guidance to help improve university proposals and increase those teams’ potential of being selected to fly to space as part of NASA’s CSLI and the U.S. Air Force UNP. Both CSLI and UNP will make their selections for future flights in 2024.

Final presentations will take place in Albuquerque and although not required, participants are encouraged to also attend the Small Satellite Conference in Logan, Utah. The program provides funding for all travel – including kickoff, final event, and in-person reviews – allowing faculty and students to formulate teams without straining university resources.

CSLI is one of many ways NASA is attracting and retaining students in STEM disciplines. This strengthens NASA’s and the nation’s future workforce. Further, the initiative promotes and develops innovative technology partnerships among NASA, U.S. industry, and other sectors for the benefit of agency programs and projects.

For more information about NASA’s CSLI, visit:

https://www.nasa.gov/directorates/heo/home/CubeSats_initiative