The Sun emitted a significant solar flare on April 16, 2022, peaking at 11:34 p.m. EST. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured an image of the event.
Solar flares are powerful bursts of energy. Flares and solar eruptions can impact radio communications, electric power grids, navigation signals, and pose risks to spacecraft and astronauts.
This flare is classified as an X-Class flare. X-class denotes the most intense flares, while the number provides more information about its strength. More info on how flares are classified can be found here.
To see how space weather may affect Earth, please visit NOAA’s Space Weather Prediction Center https://spaceweather.gov/, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth.
The Sun emitted a mid-level solar flare on March 31, 2022, peaking at 2:35 p.m. EST. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured an image of the event.
Solar flares are powerful bursts of energy. Flares and solar eruptions can impact radio communications, electric power grids, navigation signals, and pose risks to spacecraft and astronauts.
This flare is classified as an M-Class flare. M-class flares are a tenth the size of the most intense flares, the X-class flares. The number provides more information about its strength. An M2 is twice as intense as an M1, an M3 is three times as intense, etc. More info on how flares are classified can be found here.
To see how such space weather may affect Earth, please visit NOAA’s Space Weather Prediction Center https://spaceweather.gov/, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth.
The Sun emitted a significant solar flare on March 30, 2022, peaking at 1:35 p.m. EST. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured an image of the event.
Solar flares are powerful bursts of energy. Flares and solar eruptions can impact radio communications, electric power grids, navigation signals, and pose risks to spacecraft and astronauts.
This flare is classified as an X-Class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. More info on how flares are classified can be found here.
To see how such space weather may affect Earth, please visit NOAA’s Space Weather Prediction Center https://spaceweather.gov/, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth.
The Sun emitted a mid-level solar flare on Jan. 20, 2022, peaking at 1:01 a.m. EST. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured an image of the event.
Solar flares are powerful bursts of energy. Flares and solar eruptions can impact radio communications, electric power grids, navigation signals, and pose risks to spacecraft and astronauts.
This flare is classified as a M5.5 class flare. More info on how flares are classified here.
To see how such space weather may affect Earth, please visit NOAA’s Space Weather Prediction Center https://spaceweather.gov/, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth.
From a flash on the Sun to a glimmer in the sky, last week’s solar storms illustrated the connection between the Sun and Earth. Three solar eruptions made their journey to Earth, culminating in aurora borealis, or northern lights, visible as far south as Utah.
It began with two active regions on the Sun – places where the Sun’s magnetic field is especially intense. All the active regions present on the Sun on Nov. 1 are shown below on a magnetic map of the Sun created by the Helioseismic and Magnetic Imager (HMI) instrument aboard NASA’s Solar Dynamics Observatory. Pay special attention to Active Region (AR) 12887, toward the bottom right, and AR 12891, near the middle of the Sun.
On Nov. 1, AR 12887 erupted with a C1.3-class flare, reaching peak brightness at about 2 p.m. EDT. (Solar flares are divided into A, B, C, M and X-classes, each class ten times stronger than its predecessor. The number provides more information about its strength: A C2 is twice as intense as an C1, a C3 is three times as intense, etc.
Classes A through C typically have little to no effect on Earth.) Three hours later, an even brighter C4-class flare followed; two hours after that, an M1.6-class flare erupted from AR 12891 towards the center of the Sun. The Solar Dynamics Observatory’s Atmospheric Imaging Assembly instrument captured images of each flare at 193 Angstroms, a wavelength that highlights hot solar material more than a million degrees Fahrenheit.
These flares were not strong enough to have noticeable impacts on Earth. But even weaker solar flares sometimes coincide with coronal mass ejections, or CMEs – bursts of solar material that escape the Sun and spill out to space – which can still have impacts, as these did.
The European Space Agency/NASA’s Solar and Heliospheric Observatory, or SOHO mission, stationed at the first Lagrange point where forces from the satellite motion and the Sun and Earth’s gravity balance, carries an ideal instrument for detecting CMEs. This instrument, called a coronagraph, blocks the Sun’s bright surface to reveal its faint corona, or outer atmosphere, where solar eruptions are more easily spotted. In SOHO’s imagery from the event, the CMEs following each flare appear like clouds of smoke issuing from the Sun.
Scientists at NASA’s Moon to Mars Space Weather Office retrieved the spacecraft data and entered it into a model to simulate the likely path of the CMEs. The simulation, shown below, depicts the Sun at the center, marking the current locations of several planets and spacecraft. Earth appears as a yellow dot at 3 o’clock.
The simulations suggested that the three CMEs would blend together, creating a shockwave headed towards Earth and expected to arrive sometime late on Nov. 3 or early on Nov. 4.
Earth’s magnetic field and thick atmosphere protects its surface (and us) from most effects of solar eruptions. But the highest layers of our atmosphere can undergo many changes. As a CME collides with Earth’s magnetic field, it can generate geomagnetic storms: disturbances to Earth’s magnetic environment that have a variety of impacts, including the northern and southern lights.
By 5 p.m. EDT on Nov. 3, the shockwave had arrived. Magnetometers across the planet registered a Kp index – a measure of disturbance to Earth’s magnetic field – of 7, corresponding to a strong geomagnetic storm. Kp index levels range from 0 (quiet) to 9 (intense).
In the early morning hours of Nov. 4, aurora watchers across the Northern Hemisphere documented the results. The animated gif below shows the aurora over Utah, captured by NASA JPL producer Bill Dunford on Nov. 4 between 1:30-1:42 a.m. MDT.
This geomagnetic storm is now over, but as Solar Cycle 25 picks up and the Sun becomes more active, there is sure to be more.
To see how such space weather may affect Earth, please visit NOAA’s Space Weather Prediction Center https://spaceweather.gov/, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth.
By Miles Hatfield NASA’s Goddard Space Flight Center, Greenbelt, Md.
Brighter than a shimmering ghost, faster than the flick of a black cat’s tail, the Sun cast a spell in our direction, just in time for Halloween. This imagery captured by NASA’s Solar Dynamics Observatory covers a busy few days of activity between Oct. 25-28 that ended with a significant solar flare.
From late afternoon Oct. 25 through mid-morning Oct. 26, an active region on the left limb of the Sun flickered with a series of small flares and petal-like eruptions of solar material.
Meanwhile, the Sun was sporting more active regions at its lower center, directly facing Earth. On Oct. 28, the biggest of these released a significant flare, which peaked at 11:35 a.m. EDT.
Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth’s atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel.
This flare was classified as an X1-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, and so on. Flares that are classified X10 or stronger are considered unusually intense.
This was the second X-class flare of Solar Cycle 25, which began in Dec. 2019. A new solar cycle comes roughly every 11 years. Over the course of each cycle, the Sun transitions from relatively calm to active and stormy, and then quiet again; at its peak, known as solar maximum, the Sun’s magnetic poles flip.
Two other eruptions blew off the Sun from this active region: an eruption of solar material called a coronal mass ejection and an invisible swarm of solar energetic particles. These are high-energy charged particles accelerated by solar eruptions.
NASA’s fleet of Heliophysics missions keeps constant watch on the Sun and space to help us understand what causes such eruptions on the Sun, as well as how this activity affects space, including near Earth, where it can impact astronauts and satellites.
The Sun emitted a significant solar flare peaking at 11:35 a.m. EDT on Oct. 28, 2021. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured an image of the event.
Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth’s atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel.
This flare is classified as an X1-class flare.
X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. Flares that are classified X10 or stronger are considered unusually intense.
To see how such space weather may affect Earth, please visit NOAA’s Space Weather Prediction Center https://spaceweather.gov/, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. NASA works as the research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth.
A mass of solar material that erupted from the Sun on Oct. 9, 2021, reached Earth on Oct. 12. The Earth-directed coronal mass ejection, or CME, elevated the Kp index, a measure of disturbance to Earth’s magnetic field, to 6 (moderate level). Kp index levels range from 0 (quiet) to 9 (intense).
The CME was associated with an M1.6 class solar flare from Active Region 2882 on that peaked on Oct. 9 at 6:38 UTC (2:38 a.m. EDT). M-class flares are a tenth the size of the most intense flares, the X-class flares. The number provides more information about its strength. An M2 is twice as intense as an M1, an M3 is three times as intense, etc. The flare also generated a solar energetic particle eruption that was detected by NASA’s Solar Terrestrial Relations Observatory-Ahead, or STEREO-A spacecraft, at 7:51 UTC (3:51 a.m. EDT).
STEREO-A also detected the CME from its vantage point away from Earth. The CME’s initial speed was estimated by NASA’s Moon to Mars Space Weather Operations Office to be approximately 983 kilometers per second (610 miles per second). This and other information about the event is reported in the Space Weather Database Of Notifications, Knowledge, Information (DONKI) catalog.
NOAA’s Space Weather Prediction Center is the official source for space weather forecasts, watches, warnings and alerts. Visit http://spaceweather.gov for information about potential impacts from this event.
The Sun emitted a significant solar flare peaking at 10:29 a.m. EDT on July 3, 2021. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured an image of the event.
Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth’s atmosphere to physically affect humans on the ground, however – when intense enough – they can disturb the atmosphere in the layer where GPS and communications signals travel.
To see how such space weather may affect Earth, please visit NOAA’s Space Weather Prediction Center at http://spaceweather.gov, the U.S. government’s official source for space weather forecasts, watches, warnings and alerts.
This flare is classified as an X1.5-class flare.
X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc.
The dark spot across the north pole of the Sun – as captured in this image on July 31, 2020, from NASA’s Solar Dynamics Observatory, or SDO – is an area of relatively cooler material in the solar atmosphere, known as a coronal hole. Coronal holes are regions on the Sun where the magnetic field is open to interplanetary space, sending solar material speeding out in a high-speed stream of solar wind. (The extreme ultraviolet light in this SDO image is normally invisible to the eye, but is colorized here in bronze.)
In this case, instruments such as those on NOAA’s DSCOVR spacecraft observed a high-speed stream arrival on Aug. 2. and climb in speed over the next couple days, as can be seen in the graph of the solar wind speed shown here.
Coronal holes appear throughout the Sun’s approximately-11-year solar cycle, but can last for much longer periods of time during solar minimum – a period of time when activity on the Sun is substantially diminished, and which the Sun is just beginning to wake up from now.