The International Space Station was pictured by an Expedition 56 crewmember aboard a departing Soyuz crew ship on Oct. 4, 2018.
NASA has requested SpaceX move off from May 1 for the launch of the company’s 17th commercial resupply mission to the International Space Station.
On April 29, the space station team identified an issue with one of the station’s Main Bus Switching Units that distributes power to two of the eight power channels on the station. There are no immediate concerns for the crew or the station. Teams are working on a plan to robotically replace the failed unit and restore full power to the station system. Additional information will be provided as it becomes available. The earliest possible launch opportunity is no earlier than Friday, May 3.
April 19, 2019: International Space Station Configuration. Five spaceships are docked at the space station including Northrop Grumman’s Cygnus space freighter and Russia’s Progress 71 and 72 resupply ships and the Soyuz MS-11 and MS-12 crew ships.
After its capture this morning at 5:28 a.m. EDT, the Northrop Grumman Cygnus spacecraft was bolted into place on the International Space Station’s Earth-facing port of the Unity module at 7:31 a.m. At the time of installation, Cygnus was flying 255 miles above the Indian Ocean just south of Singapore.
Cygnus will remain at the space station until July 23, when the spacecraft will depart the station, deploy NanoRacks customer CubeSats, then have an extended mission of nine months before it will dispose of several tons of trash during a fiery reentry into Earth’s atmosphere.
The spacecraft’s arrival brings close to 7,600 pounds of research and supplies to space station. Highlights of NASA-sponsored research to advance exploration goals and enable future missions to the Moon and Mars include:
Models for growing increasingly complex materials
Advanced Colloids Experiment-Temperature-10 (ACE-T-10) will test gels in a microgravity environment. This research could aid in the development of increasingly complex materials that may serve as the building blocks for a range of applications on Earth including foods, drugs, and electronic devices. The process also may provide an efficient method to build new materials and equipment in space.
Better life science research in a few drops
Although the space station is well equipped for health and life sciences research, the equipment available for cellular and molecular biology still is limited compared to capabilities found in laboratories on Earth. To address this limitation, CSA designed Bio-Analyzer, a new tool the size of a video game console that astronauts on station easily can use to test body fluids such as blood, saliva, and urine, with just a few drops. It returns key analyses, such as blood cell counts, in just two to three hours, eliminating the need to freeze and store samples.
Analyzing aging of the arteries in astronauts
The Vascular Aging investigation uses ultrasounds, blood samples, oral glucose tolerance tests, and wearable sensors to study aging-like changes that occur in many astronauts during their stay on the space station. It’s one of three Canadian experiments exploring the effects of weightlessness on the blood vessels and heart, and the links between these effects and bone health, blood biomarkers, insulin resistance, and radiation exposure. Increased understanding of these mechanisms can be used to address vascular aging in both astronauts and the aging Earth population.
Testing immune response in space
Spaceflight is known to have a dramatic influence on an astronaut’s immune response, but there is little research on its effect following an actual challenge to the body’s immune system. The rodent immune system closely parallels that of humans, and Rodent Research-12: Tetanus Antibody Response by B cells in Space (TARBIS) will examine the effects of spaceflight on the function of antibody production and immune memory. This investigation aims to advance the development of measures to counter these effects and help maintain crew health during future long-duration space missions. On Earth, it could advance research to improve the effectiveness of vaccines and therapies for treating diseases and cancers.
Big buzz for new robot
A fleet of small robots is set to take on big jobs aboard the space station. Building on the success of SPHERES, NASA will test Astrobee, a robotic system comprised of three cube-shaped robots and a docking station for recharging; the first two are aboard Cygnus. The free-flying robots use electric fans for propulsion and cameras and sensors help them navigate their surroundings. The robots also have an arm to grasp station handrails or grab and hold items. Astrobee can operate in automated mode or under remote control from the ground as it assists with routine chores on station, and requires no supervision from the crew. This has the potential to free up astronauts to conduct more research.
Russia’s Progress 72 resupply ship approaches the International Space Station’s Pirs docking compartment today.
Traveling about 254 miles over central China, the unpiloted Russian Progress 72 cargo ship docked at 10:22 a.m. EDT to the Pirs docking compartment on the Russian segment of the complex.
In addition to the arrival of Progress today, the crewmembers aboard the space station are scheduled to greet two other cargo resupply missions this month. Northrop Grumman’s Antares rocket with Cygnus cargo spacecraft will launch from Pad 0A of Virginia Space’s Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore on April 17, followed the next week by the launch of SpaceX’s Falcon 9 rocket and cargo Dragon spacecraft from Launch Complex 40 on Cape Canaveral Air Force Station in Florida.
SpaceX’s Falcon 9 rocket and cargo Dragon spacecraft also is scheduled to launch from Launch Complex 40 on Cape Canaveral Air Force Station in Florida. Learn more about station activities by following @space_station and @ISS_Research Twitter as well as the ISS Facebook and ISS Instagram accounts.