Dragon Attached to Station, Returns to Earth in January

Dec. 8, 2018: International Space Station Configuration
Dec. 8, 2018: International Space Station Configuration. Six spaceships are attached at the space station including the U.S. resupply ships Northrop Grumman Cygnus and the SpaceX Dragon; and Russia’s Progress 70 and 71 resupply ships and the Soyuz MS-09 and MS-10 crew ships all from Roscosmos.

Three days after its launch from Florida, the SpaceX Dragon cargo spacecraft was installed on the Earth-facing side of the International Space Station’s Harmony module at 10:36 a.m. EST.

The 16th contracted commercial resupply mission from SpaceX delivers more than 5,600 pounds of research, crew supplies and hardware to the orbiting laboratory. Among the research it will bring to station, science investigations and technology demonstrations aboard Dragon include:

The Global Ecosystem Dynamics Investigation (GEDI) will provide high-quality laser ranging observations of the Earth’s forests and topography required to advance the understanding of important carbon and water cycling processes, biodiversity, and habitat. GEDI will be mounted on the Japanese Experiment Module’s Exposed Facility and provide the first high-resolution observations of forest vertical structure at a global scale. These observations will quantify the aboveground carbon stored in vegetation and changes that result from vegetation disturbance and recovery, the potential for forests to sequester carbon in the future, and habitat structure and its influence on habitat quality and biodiversity.

A small satellite deployment mechanism, called SlingShot, will be ride up in Dragon and then be installed in a Northrop Grumman Cygnus spacecraft prior to its departure from the space station. SlingShot can accommodate as many as 18 CubeSats of any format. After the Cygnus cargo ship departs from station, the spacecraft navigates to an altitude of 280 to 310 miles (an orbit higher than that of the space station) to deploy the satellites.

Robotic Refueling Mission-3 (RRM3) will demonstrate the first transfer and long-term storage of liquid methane, a cryogenic fluid, in microgravity. The ability to replenish and store cryogenic fluids, which can function as a fuel or coolant, will help enable long duration journeys to destinations, such as the Moon and Mars.

Growth of Large, Perfect Protein Crystals for Neutron Crystallography (Perfect Crystals) crystallizes an antioxidant protein found inside the human body to analyze its shape. This research may shed light on how the protein helps protect the human body from ionizing radiation and oxidants created as a byproduct of metabolism. For best results, analysis requires large crystals with minimal imperfections, which are more easily produced in the microgravity environment of the space station.

Dragon is scheduled to depart the station in January 2019 and return to Earth with more than 4,000 pounds of research, hardware and crew supplies.

Keep up to date with the latest news from the crew living in space by following https://blogs.nasa.gov/spacestation/, @space_station and @ISS_Research on Twitter, and the ISS Facebook and ISS Instagram accounts.

Dragon in the Grips of Robotic Arm, Installation Occurs Next

SpaceX Dragon Capture
The SpaceX Dragon cargo craft is moments way from being captured with the Canadarm2 robotic arm.

While the International Space Station was traveling about 250 miles over the Pacific Ocean north of Papua New Guinea, Expedition 57 Commander Alexander Gerst of ESA (European Space Agency) and Flight Engineer Serena Auñón-Chancellor, captured the Dragon spacecraft at 7:21 a.m. EST using the space station’s Canadarm2 robotic arm.

Ground controllers will now send commands to begin the robotic installation of the spacecraft on bottom of the station’s Harmony module. NASA Television coverage of installation is scheduled to begin at 9 a.m. Watch online at www.nasa.gov/live.

The Dragon lifted off on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida Wednesday, Dec 5 with more than 5,600 pounds of research, equipment, cargo and supplies that will support dozens of investigations aboard the orbiting laboratory.

The International Space Station is an accessible space laboratory with unparalleled capability that is increasing knowledge of engineering and physical sciences, biology, the Earth, and the universe through research and technology demonstrations and providing the foundation for continuing human spaceflight beyond low-Earth orbit. NASA’s human research is closing the gaps in current scientific understanding of how best to predict, assess, and solve the problems that humans encounter while living and working in space, and extend that knowledge to protect the women and men who will go forward to the Moon and Mars.

Keep up to date with the latest news from the crew living in space by following https://blogs.nasa.gov/spacestation/, @space_station and @ISS_Research on Twitter, and the ISS Facebook and ISS Instagram accounts.

Dragon Launch Slips One Day as New Crew Moves In

Expedition 57 Commander Alexander Gerst
Expedition 57 Commander Alexander Gerst of ESA (European Space Agency) peers out the International Space Station’s “window to the world,” the seven-windowed cupola. Just outside the cupola are two spacecraft including the Soyuz MS-09 crew craft and Northrop Grumman’s Cygnus cargo craft with one of its cymbal-shaped UltraFlex solar arrays featuring prominently in the frame.

The launch of the SpaceX Dragon cargo vessel slipped one day to Wednesday at 1:16 p.m. EST with meteorologists forecasting 90% favorable weather for launch. Meanwhile, the newest crew members aboard the International Space Station are getting used to their new home in space.

Dragon’s 16th mission to the orbital lab will deliver almost 5,700 pounds of science, crew supplies and hardware. The commercial space freighter is due to arrive at the station Saturday when astronauts Alexander Gerst and Serena Auñón-Chancellor will command the Canadarm2 to grapple Dragon around 6 a.m.

New station crew members Oleg Kononenko, Anne McClain and David Saint-Jacques are in their second day aboard the station. The trio are familiarizing themselves with station systems and safety procedures today. They began their mission Monday when they launched aboard the Soyuz MS-11 spacecraft at 6:31 a.m. and docked just six hours and two minutes later to the Poisk module. The new crew will stay in space until June.

Expedition 57 Commander Alexander Gerst is getting for his return to Earth on Dec. 20 and began packing his personal items today. He’ll wrap up his mission with Flight Engineers Serena Auñón-Chancellor and Sergey Prokopyev and land in Kazakhstan inside the Soyuz MS-09 crew ship after six-and-a-half months in space.

Canadian Robotic Arm Installs U.S. Cygnus Cargo Ship to Station

The International Space Station heads into an orbital sunset
The International Space Station heads into an orbital sunset as the Canadarm2 robotic arm guides the Cygnus space freighter to its installation point on the Unity module. Credit: NASA TV

The Northrop Grumman Cygnus cargo ship was bolted into place on the International Space Station’s Earth-facing port of the Unity module at 7:31 a.m. EST. The spacecraft will spend about three months attached to the space station before departing in February 2019. After it leaves the station, the uncrewed spacecraft will deploy several CubeSats before its fiery re-entry into Earth’s atmosphere as it disposes of several tons of trash.

The spacecraft’s arrival brings close to 7,400 pounds of research and supplies to space station. Highlights of NASA-sponsored research to advance exploration goals and enable future missions to the Moon and Mars include:

Sensory input in microgravity

Changes in sensory input in microgravity may be misinterpreted and cause a person to make errors in estimation of velocity, distance or orientation. VECTION examines this effect as well as whether people adapt to altered sensory input on long-duration missions and how that adaptation changes upon return to Earth. Using a virtual reality display, astronauts estimate the distance to an object, length of an object and orientation of their bodies in space. Tests are conducted before, during and after flight. The investigation is named for a visual illusion of self-movement, called vection, which occurs when an individual is still but sees the world moving past, according to principal investigator Laurence Harris. The Canadian Space Agency (CSA) sponsors the investigation.

Solidifying cement in space

The MVP-Cell 05 investigation uses a centrifuge to provide a variable gravity environment to study the complex process of cement solidification, a step toward eventually making and using concrete on extraterrestrial bodies. These tests are a follow-on to the previous studies known as Microgravity Investigation of Cement Solidification (MICS), which studied cement solidification in microgravity.  Together, these tests will help engineers better understand the microstructure and material properties of cement, leading to design of safer, lightweight space habitats and improving cement processing techniques on Earth. This investigation is sponsored by NASA.

Investigations sponsored by the U.S. National Laboratory on the space station, which Congress designated in 2005 to maximize its use for improving quality of life on Earth, include:

From stardust to solar systems

Much of the universe was created when dust from star-based processes clumped into intermediate-sized particles and eventually became planets, moons and other objects. Many questions remain as to just how this worked, though. The EXCISS investigation seeks answers by simulating the high-energy, low gravity conditions that were present during formation of the early solar system. Scientists plan to zap a specially formulated dust with an electrical current, then study the shape and texture of pellets formed.

Principal investigator Tamara Koch explains that the dust is made up of particles of forsterite (Mg2SiO4), the main mineral in many meteorites and related to olivine, also known as the gemstone peridot. The particles are about the diameter of a human hair.

Growing crystals to fight Parkinson’s disease

The CASIS PCG-16 investigation grows large crystals of an important protein, Leucine-rich repeat kinase 2, or LRRK2, in microgravity for analysis back on Earth. This protein is implicated in development of Parkinson’s disease, and improving our knowledge of its structure may help scientists better understand the pathology of the disease and develop therapies to treat it. Crystals of LRRK2 grown in gravity are too small and too compact to study, making microgravity an essential part of this research.

Better gas separation membranes

Membranes represent one of the most energy-efficient and cost-effective technologies for separating and removing carbon dioxide from waste gases, thereby reducing greenhouse gas emissions. CEMSICA tests membranes made from particles of calcium-silicate (C-S) with pores 100 nanometers or smaller. Producing these membranes in microgravity may resolve some of the challenges of their manufacture on Earth and lead to development of lower-cost, more durable membranes that use less energy. The technology ultimately may help reduce the harmful effects of CO2 emissions on the planet.

For more information about the International Space Station, visit www.nasa.gov/station.

US Cargo Mission Slips a Day; Station Tests Free-Flying AI Assistant

Flight Engineer Serena Auñón-Chancellor
Flight Engineer Serena Auñón-Chancellor practices on a computer the maneuvers she will use with Canadarm2 robotic arm to capture the U.S. Cygnus space freighter on Monday.

The launch of the Cygnus space freighter from Northrop Grumman has slipped another day due to inclement weather at the Wallops Flight Facility on Virginia’s Atlantic coast. Cygnus is now scheduled to launch atop the Antares rocket Saturday at 4:01 a.m. EST with a much improved weather forecast.

The U.S. resupply ship will deliver approximately 7,400 pounds of food, fuel and supplies to the station two days later. Flight Engineer Serena Auñón-Chancellor will command the Canadarm2 robotic arm to capture Cygnus Monday at 5:20 a.m. Commander Alexander Gerst will back her up and monitor telemetry from the vehicle during its approach and rendezvous.

The Progress 71 (71P) cargo craft from Russia is at the Baikonur Cosmodrome launch pad in Kazakhstan ready to blast off Friday at 1:14 p.m. EST. Prokopyev will be monitoring the Russian resupply ship when it arrives Sunday for an automated docking to the rear port of the Zvezda service module at 2:30 p.m.

The International Space Station Program is testing the use of artificial intelligence today to contribute to mission success aboard the orbital laboratory. Meanwhile, the space residents from the U.S., Germany and Russia continued more human research and prepared for the upcoming U.S. and Russian space deliveries.

CIMON, or Crew Interactive MObile CompanioN, is a free-flying robotic assistant based on artificial intelligence currently being tested on the station. The astronaut support device from ESA (European Space Agency) was powered up and commissioned today by the station commander inside the Columbus lab module. The CIMON technology seeks to demonstrate astronaut-robot interaction by answering crew questions, assisting with science experiments and navigating autonomously in the lab.

Cosmonaut Sergey Prokopyev and fellow crewmates Gerst and Auñón-Chancellor started Thursday with ongoing eye checks. Gerst and Serena swapped roles as Crew Medical Officer scanning each other’s eyes including Prokopyev’s using an ultrasound device with guidance from a doctor on the ground. The data is downlinked to Earth real-time and helps scientists understand how microgravity affects astronaut vision as well as the components and shape of the eye.

Astronauts Prepare for Japanese Cargo Ship Departure

Flight Engineer Serena Auñón-Chancellor of NASA monitors the arrival of the H-II Transfer Vehicle-7
Flight Engineer Serena Auñón-Chancellor of NASA monitors the arrival of the H-II Transfer Vehicle-7 (HTV-7) before it was captured during Expedition 56 by Commander Drew Feustel operating the Canadarm2 robotic arm.

A pair of Expedition 57 astronauts trained for the release of a Japanese resupply ship Wednesday after a 41-day mission at the International Space Station. Japan’s seventh cargo ship, H-II Transfer Vehicle-7 (HTV-7), has one more mission though after it departs the orbital lab.

If all goes as planned, astronaut Alexander Gerst of ESA (European Space Agency) will command the Canadarm2 robotic arm to release the HTV-7, also called the Kounotori, Wednesday at 11:50 a.m. EST. Flight Engineer Serena Auñón-Chancellor will back up Gerst in the cupola monitoring the vehicle and its telemetry as it slowly backs away from the space station. The two astronauts reviewed departure procedures and practiced robotics controls on a computer today. NASA TV will broadcast live the space freighter’s departure beginning at 11:30 a.m.

Kounotori was captured Sept. 27 and delivered external station batteries and hardware to be configured during a pair of upcoming spacewalks. The resupply ship also replenished the station with advanced science experiments and equipment to benefit humans on Earth and in space.

However, it has one more payload to deliver for splashdown on Earth before the vehicle burns up harmlessly over the Pacific Ocean. The HTV-7 will release a small reentry capsule packed with test cargo for retrieval by the Japan Aerospace Exploration Agency (JAXA). The splashdown mission is a test of JAXA’s ability to return small payloads from space for quick delivery to researchers on Earth.

Cosmonaut Sergey Prokopyev worked on science and maintenance tasks throughout Monday in the orbital lab’s Russian segment. He started out researching how the space environment and solar radiation affects plasma-dust crystals. Prokopyev finished up his day photographing the condition of the Zvezda service module interior panels before disposing of obsolete hardware in the Progress 70 resupply ship.

Rocket Investigation Complete; Russia, Japan Announce Mission Updates

The Soyuz MS-10 spacecraft launched Oct. 11, 2018
The Soyuz MS-10 spacecraft launched Oct. 11, 2018, with Expedition 57 crew members Nick Hague of NASA and Alexey Ovchinin of Roscosmos. During the Soyuz spacecraft’s climb to orbit, an anomaly occurred, resulting in an abort downrange. The crew was quickly recovered in good condition.

NASA is working closely with its International Space Station partner Roscosmos to move forward on crew launch plans. Roscosmos plans to launch the Progress 71 resupply mission on Nov. 16, and is targeting the launch of the Expedition 58 crew including NASA astronaut Anne McClain for Dec. 3, pending the outcome of the flight readiness review.

Roscosmos completed an investigation into the loss of a Soyuz rocket last month that led to a suspension of Russian rocket launches to the station. One of four first stage rocket engines abnormally separated and hit the second stage rocket that led to the loss of stabilization of the Soyuz on Oct. 11. A statement from Roscosmos describes the cause…

“The reason for the abnormal separation is the non-opening of the nozzle cap of the “D” block oxidizer tank because of the deformation of the stem of the separation contact sensor (bending on 6 ˚ 45 ‘), which was admitted when assembling the “package” at the Baikonur Cosmodrome. The cause of the LV accident is of operational nature and extends to the backlog of the “Soyuz” type LV “package”.”

Japan also announced today the release of its H-II Transfer Vehicle-7 (HTV-7) resupply ship, also called the Kounotori, from the station’s Harmony module. Commander Alexander Gerst will command the Canadarm2 robotic arm to release Kounotori Nov. 7 at 10:50 a.m. EDT as Flight Engineer Serena Auñón-Chancellor supports him.

U.S. Astronauts Capture Japanese Spaceship Loaded With Cargo

Japanese Cargo Ship Captured By Canadian Robotic Arm
Japan’s HTV-7 cargo ship is pictured shortly after being captured with the Canadarm2 robotic arm. Credit: @Space Station

Using the International Space Station’s robotic arm, Canadarm2, Expedition 56 Commander Drew Feustel and Flight Engineer Serena Auñón-Chancellor of NASA grappled the Japan Aerospace Exploration Agency’s Kounotori H-II Transfer Vehicle (HTV-7) at 7:34 a.m. EDT and successfully completed the capture at 7:36 a.m. At the time of capture, the space station and cargo spacecraft were flying 250 miles above the north Pacific Ocean.

Next, robotic ground controllers will install HTV-7 on the Earth-facing side of the Harmony module. NASA TV coverage of the berthing will begin at 10 a.m., 30 minutes earlier than originally scheduled, at https://www.nasa.gov/multimedia/nasatv/index.html#media

The Japanese cargo ship, whose name means “white stork,” is loaded with more than five tons of supplies, water, spare parts and experiments for the crew aboard the International Space Station. The spacecraft also is carrying a half dozen new lithium-ion batteries to continue upgrades to the station’s power system.

In addition to new hardware to upgrade the station’s electrical power system, the HTV-7 is carrying a new sample holder for the Electrostatic Levitation Furnace (JAXA-ELF), a protein crystal growth experiment at low temperatures (JAXA LT PCG), an investigation that looks at the effect of microgravity on bone marrow (MARROW), a Life Sciences Glovebox, and additional EXPRESS Racks.

For updates about the crew’s activities on the unique orbiting laboratory, visit: https://blogs.nasa.gov/spacestation/. Get breaking news, images and features from the station on Instagram at: @iss and on Twitter @Space_Station and @ISS_Research.

Commander Leads Japanese, Russian Spaceship Preps and BEAM Checks

Expedition 55/56 crew members inside BEAM
Expedition 55/56 crew members (from left) Ricky Arnold, Drew Feustel and Oleg Artemyev, pose for a portrait inside the Bigelow Expandable Aerospace Module (BEAM).

The Expedition 56 crew is ramping for a busy traffic period at the International Space Station during the next couple of weeks. This all comes as the orbital residents ensure BEAM’s operational life and continue ongoing microgravity science.

Japan’s seventh “Kounotori” resupply ship is nearing the orbital complex and closing in for a Thursday morning capture. Commander Drew Feustel practiced on a computer today the procedures he will use when he commands the Canadarm2 to grapple Kounotori around 8 a.m. NASA TV is broadcasting the live coverage of the HTV-7 arrival and capture starting at 6:30 a.m.

Feustel is also getting ready to return to Earth on Oct. 4 with crewmates Oleg Artemyev of Roscosmos and Ricky Arnold. During the morning, the three crewmates checked the Sokol launch and entry suits they will wear when they reenter Earth’s atmosphere inside the Soyuz MS-08 spacecraft.

The commander also joined Flight Engineer Serena Auñón-Chancellor opening up the Bigelow Expandable Activity Module (BEAM) for maintenance and stowage work.The duo reinforced and stiffened struts inside BEAM to increase its safety margin and extend its operational life. They also stowed a variety of hardware inside the station’s newest module.

DNA sequencing from microbe samples is taking place onboard the station today to help scientists understand the impacts of living in space. The atomization of fluids continues to being studied potentially improving fuel efficiency on Earth and in spacecraft. A variety of space gear housing experiments and research samples was checked out today as part regularly scheduled maintenance.

Station Preps For Japan Resupply Ship as Next Crew Readies for Mission

Astronauts Drew Feustel and Serena Auñón-Chancellor
Astronauts Drew Feustel and Serena Auñón-Chancellor train on a computer in the U.S. Destiny laboratory practicing rendezvous procedures and robotics maneuvers ahead of the arrival of Japan’s HTV-7 resupply ship.

Japan is poised to launch its HTV-7 resupply ship, nicknamed the Kounotori, loaded with over five tons of cargo to the International Space Station on Friday, U.S. time. Back on Earth, a new crew is preparing for its launch from Kazakhstan next month to the orbital lab.

JAXA’s (Japan Aerospace Exploration Agency) H-IIB rocket is set to blast off from the Tanegashima Space Center Friday at 4:59 p.m. EDT and send the Kounotori cargo craft on a four-day ride to the station. Commander Drew Feustel and will be in the Cupola Tuesday, with Flight Engineer Serena Auñón-Chancellor as his backup, to command the Canadarm2 robotic arm to capture the Kounotori at 7:30 a.m. The duo trained Thursday morning on a computer and practiced rendezvous procedures and robotics maneuvers.

More rodent research continued today as four astronauts teamed up to study how microgravity affects the gastroinstestinal systems of mice. In particular, scientists want to know how gut microbes react to the space environment and the impact it may have on astronaut health. Results will help doctors devise plans and treatments to keep astronauts healthy on long-term missions in outer space.

Two new Expedition 57 crew members are getting ready for their mission at the Gagarin Cosmonaut Training Center in Moscow. Alexey Ovchinin from Roscosmos and Nick Hague from NASA are in Russia for qualification exams ahead of their launch and six-hour ride aboard the Soyuz MS-10 crew ship to the station on Oct. 11.


Get weekly video highlights at: http://jscfeatures.jsc.nasa.gov/videoupdate/