Station Preps for New Docking Port During Science and Soyuz Checks

The SpaceX Dragon above the Nile River Delta
The SpaceX Dragon resupply ship is pictured attached to the International Space Station’s Harmony module as the orbital complex flew 260 miles above the Nile River Delta in Egypt.

Three NASA astronauts remain focused on preparations for next week’s spacewalk at the International Space Station. The rest of the Expedition 60 focused on biology research and a pair of docked spaceships.

Flight Engineer Christina Koch has been supporting spacewalkers Nick Hague and Andrew Morgan, as they get ready for the fifth spacewalk of the year on Aug. 21. The pair will install the new International Docking Adapter-3 (IDA-3) to the Harmony module’s space-facing port during the six-and-a-half-hour job.

Koch printed out checklists the spacewalkers will wear on their spacesuit cuffs and verified the spacesuits are the correct size. She also joined Hague and Morgan reviewing next week’s spacewalk procedures. The spacewalking duo also set up the Quest airlock where they will collect their tools and suit up ahead of their excursion.

Robotics controllers will remotely command the Canadarm2 to detach the IDA-3 from the rear portion of the SpaceX Dragon on Monday. They will maneuver the new docking port to a pressurized mating adapter on top of Harmony readying it for Wednesday’s spacewalk. Hague and Morgan in their U.S. spacesuits will then route cables and configure hardware readying the IDA-3 for new SpaceX and Boeing crew ships.

Luca Parmitano, a European Space Agency (ESA) astronaut on his second station mission, worked on a biology experiment today with potential benefits for the medicine industry. He tended to stem cell samples growing in a specialized incubator to help researchers understand cell behavior in space.

Cosmonauts Alexey Ovchinin and Alexander Skvortsov checked out two docked Soyuz crew ships today. The duo tested and recharged communications gear in the vehicles and continued packing gear for return to Earth.

Robotics Supporting Exploration; Briefers Talk Friday About Spacewalk

Expedition 60 Flight Engineer Christina Koch of NASA
Expedition 60 Flight Engineer Christina Koch of NASA photographs Earth landmarks through the station’s “window to the world,” the seven-windowed cupola.

The Expedition 60 crew is busy conducting space research everyday inside the International Space Station. While they work, scientists and engineers on Earth can remotely control and observe experiments attached to the outside of the orbiting lab.

Researchers today concluded a run of the external Robotic Refueling Mission 3 experiment. Robotics controllers on the ground remotely guided the Dextre robotic hand, attached to the Canadarm2 robotic arm, and tested cryogenic refueling techniques in space. Refueling and repairing satellites and spacecraft supports NASA’s objective of sending humans to the Moon, Mars and beyond.

Back inside the space station, the astronauts continued supporting human research activities. NASA astronauts Nick Hague and Andrew Morgan joined ESA (European Space Agency) astronaut Luca Parmitano for eye exams at the end of the day. Morgan also serviced a variety of science freezers holding experiment samples for analysis. Parmitano continued researching stem cell differentiation for the Micro-15 experiment.

Hague and Morgan are also getting ready for a spacewalk on Aug. 21. The duo spent a couple of hours Wednesday configuring spacewalking tools and tethers they will use next week. The spacewalkers’ mission is to install a second commercial crew vehicle docking port, the International Docking Adapter-3, on top of the Harmony module. Briefers will discuss the spacewalk details on NASA TV beginning Friday at 2 p.m. EDT.

All six crewmembers, including NASA astronaut Christina Koch and cosmonauts Alexey Ovchinin and Alexander Skvortsov, participated in an emergency simulation during the afternoon. The station crew practiced the activities necessary to contain emergencies such as pressure and chemical leaks or a fire.

Two reboosts will occur overnight tonight to set up the correct phasing for the uncrewed Soyuz MS-14 34-orbit rendezvous next week and landing Sept. 6. The Soyuz and its 2.1a booster are scheduled to roll out to the Site 31 launch pad on Monday.

In Louisville, Colorado, Sierra Nevada Corporation announced the selection of United Launch Alliance as launch provider for the Dream Chaser spacecraft. Dream Chaser is scheduled to begin missions to transport cargo to and from the International Space Station in late 2021.

US Cargo Ship Preps to Depart as Crew Studies Bioprinting and Time Perception

Astronauts Luca Parmitano, Andrew Morgan and Nick Hague
Expedition 60 Flight Engineers (clockwise from top) Luca Parmitano, Andrew Morgan and Nick Hague work on life support maintenance inside the U.S. Destiny laboratory module.

A U.S. resupply ship is packed and ready to depart the International Space Station on Tuesday. The Expedition 60 crew is also testing the viability of printing organ-like tissue and exploring the impact of microgravity on time perception today.

NASA astronauts Nick Hague and Christina Koch finished loading and closed the hatches to the Cygnus space freighter from Northrop Grumman today. Hague will lead the robotics activities and command its release from the Canadarm2 on Tuesday at 12:15 p.m. EDT. NASA TV begins its live broadcast of Cygnus’ departure at noon after 109 days at the station.

The crew outfitted Cygnus with the SlingShot Deployer that will eject a series of nanosatellites once the spacecraft reaches a safe distance and a higher altitude from the station. Cygnus will continue orbiting Earth for a few more months of systems tests before it reenters the atmosphere above the Pacific Ocean for a fiery demise.

3-D bioprinting has proven a challenge for scientists on Earth seeking to replicate complex cellular structures. NASA astronaut Andrew Morgan is researching today whether the weightless environment of space may support the fabrication of human organs in space. He set up the station’s new BioFabrication Facility to begin test-printing tissues today. An incubator houses the tissue samples to promote cohesive cellular growth over several weeks.

Flight Engineer Luca Parmitano of the European Space Agency started Monday collecting his blood samples and stowing them in a science freezer for later analysis. Next, he wore virtual reality goggles for an experiment testing his ability to judge the duration of time. Results are collected before, during and after a spaceflight to understand how time perception is affected in space. The impacts could potentially affect space navigation and other mission-oriented tasks.

Commander Alexey Ovchinin tested Russian smoke detectors, conducted a fit check of the Soyuz MS-12 crew ship seats and worked on space biology gear. Cosmonaut Alexander Skvortsov checked out video gear then studied how microgravity affects pain sensation.

August Brings More Spaceship Traffic and a Spacewalk

July 31, 2019: International Space Station Configuration
July 31, 2019: International Space Station Configuration. Five spaceships are parked at the space station including the SpaceX Dragon cargo craft, Northrop Grumman’s Cygnus space freighter, and Russia’s Progress 73 resupply ship and Soyuz MS-12 and MS-13 crew ships.

The International Space Station is hosting five spaceships today as August ramps up for more orbital traffic activity. Six Expedition 60 crewmembers are also unloading U.S. and Russian cargo, activating new science experiments and stocking the station’s galley.

Russia’s Progress 73 (73P) cargo craft completed a fast-track delivery mission early Wednesday docking to the Pirs Docking Compartment just three hours and nineteen minutes after launching from Kazakhstan. Cosmonaut Alexander Skvortsov opened the 73P hatch shortly afterward starting its four-month stay. He and station Commander Alexey Ovchinin then began unloading nearly three tons of new consumables, fuel and supplies.

Two U.S. space freighters occupy the station’s Earth-facing Harmony and Unity module ports. Harmony will open up Tuesday when Northrop Grumman’s Cygnus resupply ship departs after 109 days in space. The Canadarm2 robotic arm installed the SpaceX Dragon to Unity on Saturday after its arrival and capture beginning a month of cargo operations.

NASA astronauts Christina Koch and Nick Hague are tending to mice today shipped aboard Dragon for ongoing biological research. The reusable vehicle will return the mice back to Earth at the end of the month, including other cargo, so scientists can analyze a variety of changes that only occur in microgravity.

Dragon also delivered a new commercial crew vehicle port, the International Docking Adapter-3 (IDA-3), in its unpressurized trunk. Robotics controllers will soon extract the IDA-3 before two spacewalkers install it to Unity’s space-facing port a few days later.

A few days before Dragon departs, Russia will launch an unpiloted Soyuz MS-14 crew ship to the orbiting lab for a test of its upgraded 2.1a Soyuz booster. It will dock to the Poisk module for a two-week stay before parachuting back to Earth in the vast steppe of Kazakhstan.

Crew Unloads Dragon as Russian Cargo Ships Depart, Prep for Launch

Russia's Progress 73 cargo craft stands at its launch pad
Russia’s Progress 73 cargo craft stands at its launch pad at the Baikonur Cosmodrome in Kazakhstan counting down to a Wednesday liftoff.

A new U.S. space freighter is open for business today after delivering its payload to the International Space Station on Saturday. Meanwhile, a Russian resupply rocket is processing for another space delivery mission on Wednesday that will take less than three and a half hours after launch.

NASA Flight Engineer Nick Hague opened Dragon’s hatch early Sunday beginning a month of cargo operations. His fellow crewmates Christina Koch and Andrew Morgan are unloading critical research samples and stowing them inside the station’s science freezers and incubators for analysis.

The new experiments will be exploring microgravity’s effect on a variety of biological and physical processes benefitting humans on Earth and in space. The crew will be researching 3-D bio-printing, silica manufacturing, botany and tissue regeneration and a host of other space phenomena.

Robotics controllers will remove the International Docking Adapter-3 (IDA-3), a new commercial crew ship docking port, from Dragon’s unpressurized trunk in mid-August. A pair of spacewalkers will install the IDA-3 on the Harmony module’s space-facing Pressurized Mating Adapter a few days later.

Russia’s Pirs Docking Compartment port opened up today at 6:44 a.m. EDT when the Progress 72 (72P) cargo craft undocked completing a four-month stay at the orbiting lab. It will re-enter the Earth’s atmosphere loaded with trash and discarded gear for a fiery, but safe disposal over the Pacific Ocean.

The new Progress 73 cargo ship will replace 72P after it launches Wednesday at 8:10 a.m. from the Baikonur Cosmodrome in Kazakhstan. It will dock to Pirs that same morning at 11:35 a.m. after just two Earth orbits packed with more food, fuel and supplies for the crew.

Cosmonauts Alexey Ovchinin and Alexander Skvortsov are training today on the tele-robotically operated rendezvous unit (TORU) for Wednesday’s arrival of the 73P. The duo will be in the Zvezda service module at the controls of the TORU monitoring the 73P’s approach ready to take over manual docking operations in the unlikely event of an emergency.

Dragon Installed to Station’s Harmony Module for Cargo Operations

July 27, 2019: International Space Station Configuration
July 27, 2019: International Space Station Configuration. Five spaceships are parked at the space station including the SpaceX Dragon cargo craft, Northrop Grumman’s Cygnus space freighter, the Progress 72 resupply ship and the Soyuz MS-12 and MS-13 crew ships.

Two days after its launch from Florida, the SpaceX Dragon cargo spacecraft was installed on the Earth-facing side of the International Space Station’s Harmony module at 12:01 p.m. EDT.

The 18th contracted commercial resupply mission from SpaceX (CRS-18) delivers more than 5,000 pounds of research, crew supplies and hardware to the orbiting laboratory.

A key item in Dragon’s unpressurized cargo section is International Docking Adapter-3 (IDA-3). Flight controllers at mission control in Houston will use the robotic arm to extract IDA-3 from Dragon and position it over Pressurized Mating Adapter-3, on the space-facing side of the Harmony module. NASA astronauts Nick Hague and  Andrew Morgan, who arrived at the station Saturday, July 20, will conduct a spacewalk in mid-August to install the docking port, connect power and data cables, and set up a high-definition camera on a boom arm.

Robotics flight control teams from NASA and the Canadian Space Agency will move the docking port into position remotely before the astronauts perform the final installation steps. IDA-3 and IDA-2, which was installed in the summer of 2016, provide a new standardized and automated docking system for future spacecraft, including upcoming commercial spacecraft that will transport astronauts through contracts with NASA.

Here’s some of the science arriving at station:

Effects of Microgravity on Microglia 3D Models

Induced pluripotent stem cells (iPSC) – adult cells genetically programmed to return to an embryonic stem cell-like state – have the ability to develop into any cell type in the human body, potentially providing an unlimited source of human cells for therapeutic purposes. Space Tango-Induced Pluripotent Stem Cells examines how specialized white blood cells derived from iPSCs of patients with Parkinson’s disease and multiple sclerosis grow and move in 3D cultures, and any changes in gene expression that occur as a result of exposure to a microgravity environment. Results could lead to the development of potential therapies.

Mechanisms of Moss in Microgravity

Space Moss compares mosses grown aboard the space station with those grown on Earth to determine how microgravity affects its growth, development, and other characteristics. Tiny plants without roots, mosses need only a small area for growth, an advantage for their potential use in space and future bases on the Moon or Mars. This investigation also could yield information that aids in engineering other plants to grow better on the Moon and Mars, as well as on Earth.

After Dragon spends approximately one month attached to the space station, the spacecraft will return to Earth with cargo and research.

Keep up to date with the latest news from the crew living in space by following https://blogs.nasa.gov/spacestation/, @space_station and @ISS_Research on Twitter, and the ISS Facebook and ISS Instagram accounts.

Dragon Captured With New Science Experiments

The SpaceX Dragon is in the grips of the Canadarm2 robotic arm
The SpaceX Dragon is in the grips of the Canadarm2 robotic arm shortly after it was captured over southern Chile.

While the International Space Station was traveling more than 260 miles over southern Chile, astronauts Nick Hague and Christina Koch of NASA grappled Dragon at 9:11 a.m. EDT using the space station’s robotic arm Canadarm2.

Ground controllers will now send commands to begin the robotic installation of the spacecraft on bottom of the station’s Harmony module. NASA Television coverage of installation is scheduled to begin at 11 a.m. Watch online at www.nasa.gov/live.

The Dragon lifted off on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida Thursday, July 25 with more than 5,000 pounds of research, equipment, cargo and supplies that will support dozens of investigations aboard the orbiting laboratory.

Here’s some of the research arriving at station:

Bio-Mining in Microgravity

The Biorock investigation will provide insight into the physical interactions of liquid, rocks and microorganisms under microgravity conditions and improve the efficiency and understanding of mining materials in space. Bio-mining eventually could help explorers on the Moon or Mars acquire needed materials, lessening the need to use precious resources from Earth and reducing the amount of supplies that explorers must take with them.

Printing Biological Tissues in Space

Using 3D biological printers to produce usable human organs has long been a dream of scientists and doctors around the globe. However, printing the tiny, complex structures found inside human organs, such as capillary structures, has proven difficult to accomplish in Earth’s gravity. To overcome this challenge, Techshot designed their BioFabrication Facility to print organ-like tissues in microgravity – a stepping stone in a long-term plan to manufacture whole human organs in space using refined biological 3D printing techniques.

Improving Tire Manufacturing from Orbit

The Goodyear Tire investigation will use microgravity to push the limits of silica fillers for tire applications. A better understanding of silica morphology and the relationship between silica structure and its properties could improve the silica design process, silica rubber formulation and tire manufacturing and performance. Such improvements could include increased fuel efficiency, which would reduce transportation costs and help to protect Earth’s environment.

Keep up to date with the latest news from the crew living in space by following https://blogs.nasa.gov/spacestation/, @space_station and @ISS_Research on Twitter, and the ISS Facebook and ISS Instagram accounts.

Station Gets Ready to Receive Dragon Cargo Craft Saturday Morning

The SpaceX Dragon cargo craft moments before its release
The last SpaceX Dragon cargo craft to visit the space station is pictured in the grips of the Canadarm2 robotic arm moments before its release on June 3, 2019.

The SpaceX Dragon space freighter is on its way to the International Space Station following a Thursday launch from Florida. The six-member Expedition 60 crew will be waiting for the commercial cargo craft’s arrival Saturday morning.

Dragon will rendezvous with the station Saturday morning reaching a point about 10 meters from the station. Flight Engineer Nick Hague will then command the Canadarm2 robotic arm to grapple the resupply ship about 10 a.m. EDT. Fellow NASA astronaut Christina Koch will back him up inside the cupola as NASA Flight Engineer Drew Morgan monitors Dragon’s approach and rendezvous. NASA TV begins its live capture and installation coverage Saturday at 8:30 a.m.

The three NASA astronauts continued robotics training today and practiced techniques to capture the commercial space freighter. The trio conducted simulation capture runs on a computer today preparing for a variety of Dragon approach and rendezvous scenarios.

Dragon is delivering over 5,000 pounds of science experiments, crew supplies and vehicle hardware. This includes the International Docking Adapter-3 for installation during an upcoming spacewalk on the Harmony module’s space-facing Pressurized Mating Adapter.

The Dragon-capturing trio later joined new crewmates Luca Parmitano and Alexander Skvortsov in the afternoon reviewing the spacecraft’s payload configuration. They will be unpacking time-critical research samples for stowage in station science freezers and incubators to analyze microgravity’s effect on biology.

Station Commander Alexey Ovchinin started Friday briefing his three newest crewmembers, who have been in space six days, on emergency hardware locations and procedures. The veteran cosmonaut then packed obsolete gear and trash inside a Russian resupply ship that is departing on Monday.

Dragon Targets Launch Today as Science Ramps Up Aboard Busy Station

Expedition 60 Flight Engineer Christina Koch
Expedition 60 Flight Engineer Christina Koch of NASA monitors a mobility test of the free-flying Astrobee robotic assistant.

Forecasters predict a 30% chance of favorable weather today for the liftoff of a U.S. cargo craft at 6:24 p.m. EDT from Florida. Mission managers are getting ready to launch the SpaceX Dragon loaded with new science experiments and the International Docking Adapter-3.

Dragon is planned to arrive at the orbiting lab Friday at 10 a.m. NASA Flight Engineers Nick Hague and Christina Koch will be on duty in the cupola to command the Canadarm2 robotic arm to capture Dragon.

Meanwhile on the International Space Station, the expanded Expedition 60 crew stepped up their science activities with virtual reality filming, free-flying robotics tests and RNA sequencing.

New crewmember Drew Morgan of NASA filmed himself today with a 360-degree camera inside the Harmony module. Morgan talked into the camera, as have previous station residents, describing his experience adapting to life in microgravity for the first time. Luca Parmitano of the European Space Agency set up the camera this morning to record the virtual reality experience for audiences on Earth.

Morgan and Parmitano along with Roscosmos cosmonaut Alexander Skvortsov are still getting up to speed with life on the orbiting laboratory. The crewmates have been in space less than a week and are familiarizing themselves with safety procedures and the station’s galley, crew quarters, medicine cabinet and toilet.

NASA Flight Engineer Christina Koch split her time today between robotics and RNA sequencing. She set up the Astrobee robotic helper in the morning testing and calibrating its free-flying motion. In the afternoon, Koch inserted RNA samples from a science freezer into the Biomolecule Sequencer to study how the space environment affects biology.

Flight Engineer Nick Hague inspected the U.S. Destiny laboratory’s large viewing window today. He photographed and checked the window used for Earth observation studies for cracks, scratches and contamination.

Cosmonauts Alexey Ovchinin and Alexander Skvortsov focused on configuring the recently arrived Soyuz MS-13 crew ship docked to the Zvezda service module. The veteran station residents also tested an automated rendezvous system ahead of the launch of a new Progress 73 cargo craft planned for July 31.

The High Definition Earth-Viewing (HDEV) experiment on the International Space Station has experienced a loss of data, and ground computers are no longer receiving communications from the payload. A team of engineers is reviewing the available health and status information from HDEV to identify what may have occurred.  Additional updates will be published as they become available.

Astronauts Relaxing Ahead of U.S. Cargo Mission

Expedition 60 Flight Engineer Nick Hague of NASA
Expedition 60 Flight Engineer Nick Hague of NASA harvests Mizuna mustard greens for the VEG-04 botany study that is exploring the viability of growing fresh food in space to support astronauts on long-term missions.

A quartet of Expedition 60 astronauts are relaxing today ahead of planned operations to receive a new space freighter on Friday. Meanwhile, a pair of cosmonauts checked Soyuz spacecraft systems and collected air samples aboard the International Space Station.

SpaceX is targeting Wednesday at 6:24 p.m. EDT for the launch of its Dragon cargo craft to resupply the station. Meteorologists, however, predict a 30% chance of favorable weather for a liftoff at the Cape Canaveral Air Force Station in Florida.

An on time launch Wednesday would see Dragon arriving at the station early Friday packed with new science experiments and a new International Docking Adapter-3. NASA Flight Engineers Nick Hague and Christina Koch will be on duty in the cupola to command the Canadarm2 robotic arm to capture Dragon at 7 a.m., while Flight Engineer Drew Morgan monitors the cargo craft’s telemetry as it approaches the orbiting lab.

The station’s newest arrivals including Morgan, Luca Parmitano of the European Space Agency and Alexander Skvortsov of Roscosmos are getting up to speed with station systems today. They are orienting themselves in microgravity, while conducting science and maintenance operations aboard the lab.

Station Commander Alexey Ovchinin checked the air quality over in the Russian side of the station. Skvortsov checked the hatch seal and recharged batteries in the new Soyuz MS-13 crew ship docked to the Zvezda service module.

Towards the end of the day, the entire six-member crew gathered for about an hour to review their roles and responsibilities in the event of an emergency. The four astronauts and two cosmonauts reviewed procedures, safety gear and escape paths for unlikely emergency scenarios such as a fire or a pressure leak aboard the station.