The SpaceX Dragon cargo craft is pictured moments after being captured with the Canadarm2 (the 57.7-foot-long robotic arm designed and built by the Canadian Space Agency) controlled by NASA astronaut Ricky Arnold as the International Space Station orbited over Quebec, Canada.
The International Space Station crew from the United States, Russia and Germany is going into the Fourth of July holiday unpacking new research gear from the SpaceX Dragon cargo craft. The six Expedition 56 crew members also conducted advanced space research and orbital lab maintenance today.
NASA astronaut Ricky Arnold opened the hatches to the SpaceX Dragon space freighter Tuesday morning beginning a month of cargo swaps. He and Commander Drew Feustel began retrieving and unpacking a variety of new space cargo. Next, Flight Engineers Serena Auñón-Chancellor and Alexander Gerst transferred critical science gear into the space station. The duo reviewed the experiment installation and research operations to help scientists learn how microgravity affects physics and biology.
The space residents, including cosmonauts Oleg Artemyev and Sergey Prokopyev, will spend the Fourth of July holiday with light duty. Gerst and Auñón-Chancellor will begin transferring mice delivered aboard Dragon into their new habitats aboard the station on Wednesday. The rodents will be observed to understand how microbes impact the gastrointestinal system in microgravity. Arnold and Feustel will be swapping frozen research samples from the Japanese Kibo lab module into the U.S. Destiny lab module.
July 2, 2018: International Space Station Configuration. Five spaceships are attached to the space station including the SpaceX Dragon and Cygnus resupply ships from the United States; and from Roscosmos, the Progress 69 resupply ship and the Soyuz MS-08 and MS-09 crew ships.
Three days after its launch from Florida, the SpaceX Dragon cargo spacecraft was installed on the Earth-facing side of the International Space Station’s Harmony module at 9:52 a.m. EDT.
The 15th contracted commercial resupply mission from SpaceX (CRS-15) delivers more than 5,900 pounds of research, crew supplies and hardware to the orbiting laboratory.
Among the research arriving to the U.S. National Laboratory is the Space Algae investigation, will discuss research to select algae strains adapted to space and sequence their genomes to identify growth-related genes. Algae consume waste carbon dioxide, can provide basic nutrition and may perceive microgravity as a trigger to produce algae oils rich in antioxidants that may help mitigate the harmful effects of microgravity and cosmic radiation during spaceflight. The Center for the Advancement of Science in Space (CASIS), which manages the U.S. National Laboratory, is sponsoring the investigation.
A technology demonstration arriving is an observational pilot study with the Crew Interactive MObile companioN (CIMON) that aims to provide first insights into the effects of crew support from an artificial intelligence (AI) in terms of efficiency and acceptance during long-term missions in space.
After Dragon spends approximately one month attached to the space station, the spacecraft will return to Earth with about 3,800 pounds of cargo and research, including an investigation to advance DNA sequencing in space and the Angiex cancer therapy investigation to improve understanding of endothelial cells that line the walls of blood vessels.
The SpaceX Dragon cargo craft was successfully launched on the Falcon 9 rocket from Launch Pad LC-40 at Kennedy Space Center, Florida.
Dragon successfully launched on the SpaceX Falcon 9 rocket at 5:42 a.m. EDT from Cape Canaveral Air Force Station. The spacecraft’s solar arrays have deployed. It will arrive at the International Space Station Monday morning carrying more than 5,900 pounds of research investigations and equipment, cargo and supplies that will support some of the hundreds of investigations aboard the orbiting laboratory.
A postlaunch press conference will take place at 8 a.m. on NASA Television and the agency’s website.
Participants are:
Kirk Shireman, manager, International Space Station Program, Johnson Space Center
NASA astronauts Ricky Arnold and Drew Feustel will use the space station’s Canadarm2 robotic arm to capture Dragon when it arrives at the station. Live coverage of the rendezvous and capture will air on NASA Television and the agency’s website beginning at 5:30 a.m. Monday, July 2. Installation coverage is set to begin at 9 a.m.
Research materials flying inside Dragon’s pressurized cargo area include a cellular biology investigation (Micro-12) to understand how microgravity affects the growth, gene expression and ability of a model bacterium to transfer electrons through its cell membrane along the bacterial nanowires it produces. Such bacteria could be used in microbial fuel cells to make electricity from waste organic material.
An Earth science instrument called the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) will provide a new space-based measurement of how plants respond to changes in water availability. This data can help society better manage agricultural water use.
An observational pilot study with the Crew Interactive MObile companioN (CIMON) aims to provide first insights into the effects of crew support from an artificial intelligence (AI) in terms of efficiency and acceptance during long-term missions in space.
Among the hundreds of pounds of hardware flying to the space station is a spare Canadian-built Latching End Effector (LEE). Each end of the Canadarm2 robotic arm has an identical LEE, and they are used as the “hands” that grapple payloads and visiting cargo spaceships. They also enable Canadarm2 to “walk” to different locations on the orbiting outpost.
Canada’s 57.7-foot-long robotic arm, also known as the Canadarm2, with a latching end effector at its tip (used to grapple approaching spacecraft and portable data grapple fixtures) is pictured in the foreground as the International Space Station was orbiting over the Caspian Sea.
NASA astronauts Drew Feustel and Ricky Arnold worked on science hardware today to support new research being delivered aboard Dragon when it arrives Monday at 7 a.m. EDT. The duo also continued studying the robotics procedures necessary to capture Dragon after its approach and rendezvous next week.
Feustel cleaned a mouse habitat for the Rodent Research-7 experiment observing microbes in the gastrointestinal system in mice. Arnold checked out the functionality of the Veggie facility that will process plants for the Veg-03 study researching how to grow food in space.
Flight Engineer Serena Auñón-Chancellor looked at how cement solidifies in space exploring its microstructure and material properties. Results could impact the design of lightweight space habitats and improve cement and concrete processing on Earth.
Finally, Alexander Gerst of the European Space Agency looked at spacesuit gear and set up the Quest airlock for future spacewalk operations. Gerst purged nitrogen from the suit’s oxygen lines and helped ground controllers prepare for overnight oxygen leak checks.
The SpaceX Dragon cargo craft is pictured in the grips of the Canadarm2 robotic arm as the International Space Station was orbiting above northern Africa on May 5, 2018.
The Expedition 56 crew members are getting ready for the arrival next week of the 15th SpaceX Dragon mission to the International Space Station. The space residents also explored how microgravity impacts health and physics today while setting up a variety of cubesats for deployment.
The Falcon 9 rocket from SpaceX that will launch the Dragon space freighter into Earth orbit is due to lift off Friday at 5:41 a.m. EDT and take a three-day trip to the orbital laboratory. The commercial space freighter will be loaded with almost six thousand pounds of new science experiments, crew supplies and space station hardware.
NASA astronaut Ricky Arnold will be backed up by Commander Drew Feustel in the Cupola when he commands the Canadarm2 to grapple Dragon Monday at 7 a.m. The duo is reviewing procedures and training on a computer this week for the rendezvous and capture activities. Robotics controllers on the ground will then take over after the capture and remotely install Dragon a couple of hours later to the Harmony module where it will remain for 32 days. NASA TV will broadcast live the Dragon science briefings, launch, capture and installation activities.
Feustel started the workweek collecting and stowing biological samples for the Multi-Omics study that is observing how gut microbes may affect an astronaut’s immune system. He then worked on the Atomization experiment that is researching liquid spray processes to potentially improve the design of jet and rocket engines.
NASA astronaut Serena Auñón-Chancellor installed a cubesat deployer on a multi-purpose experiment platform that will soon be placed outside the Japanese Kibo laboratory module. It will deploy nine different cubesats to continue space research and demonstrate space applications.
Astronaut Serena Auñón-Chancellor collects breath samples to analyze and measure red blood cell function for the Marrow investigation.
The International Space Station deployed a satellite this morning to demonstrate the potential of removing space junk. Back inside the orbital lab, the Expedition 56 crew explored space physics, studied human research and conducted an emergency drill.
A new satellite was deployed into space today from outside the Japanese Kibo laboratory module. Officially named the NanoRacks-Remove Debris satellite, it will explore using a 3D camera to map the location and speed of space debris. It will also deploy a net to capture a nanosatellite that will simulate space junk.
Arnold later joined fellow Soyuz MS-08 crewmates Drew Feustel of NASA and Oleg Artemyev of Roscosmos for an emergency drill. The trio practiced evacuating the station in their Soyuz crew ship in the unlikely event of an emergency.
U.S. and Russian cargo ships are due to launch to the space station this summer. Another cargo craft is due to end its stay at the orbital lab next month. SpaceX is counting down to a June 29 launch of its Dragon cargo ship. Roscosmos will launch its Progress 70 cargo craft on July 9. Finally, the Cygnus space freighter attached to the Unity module is due to end its stay July 15.
Astronaut Ricky Arnold exits the Quest airlock beginning the sixth spacewalk of 2018. Credit: @OlegMKS
Expedition 56 Commander Drew Feustel and Flight Engineer Ricky Arnold of NASA completed the sixth spacewalk at the International Space Station this year at 2:55 p.m. EDT, lasting 6 hours, 49 minutes. The two astronauts installed new high-definition cameras that will provide enhanced views during the final phase of approach and docking of the SpaceX Crew Dragon and Boeing Starliner commercial crew spacecraft that will soon begin launching from American soil.
They also swapped a camera assembly on the starboard truss of the station, closed an aperture door on an external environmental imaging experiment outside the Japanese Kibo module, and completed two additional tasks to relocate a grapple bar to aid future spacewalkers and secured some gear associated with a spare cooling unit housed on the station’s truss.
This was the 211th spacewalk in support of assembly and maintenance of the unique orbiting laboratory where humans have been living and working continuously for nearly 18 years. Spacewalkers have now spent a total of 54 days, 23 hours and 29 minutes working outside the station.
During the ninth spacewalk of Feustel’s career, he moved into third place for total cumulative time spent spacewalking with a total of 61 hours and 48 minutes. It was Arnold’s fifth spacewalk with a total time of 32 hours and 4 minutes.
NASA astronaut Drew Feustel seemingly hangs off the International Space Station while conducting a spacewalk with fellow NASA astronaut Ricky Arnold (out of frame) on March 29, 2018. Feustel, as are all spacewalkers, was safely tethered at all times to the space station during the six-hour, ten-minute spacewalk.
NASA Television and the agency’s website have begun the broadcast of today’s spacewalk.
Expedition 56 Commander Drew Feustel and Flight Engineer Ricky Arnold of NASA are preparing to exit the International Space Station to make improvements and repairs to the orbiting laboratory. The spacewalk is scheduled to begin about 8:10 a.m. EDT and last about six-and-a-half hours.
Newly arrived Expedition 56 crew members Serena Auñón-Chancellor of NASA and Alexander Gerst of ESA (European Space Agency) are supporting the spacewalkers.
Feustel and Arnold will install new high-definition cameras near an international docking adapter mated to the front end of the station’s Harmony module. The additions will provide enhanced views during the final phase of approach and docking of the SpaceX Crew Dragon and Boeing Starliner commercial crew spacecraft that will soon begin launching from American soil.
The astronauts also will swap out a camera assembly on the starboard truss of the station and close an aperture door on an external environmental imaging experiment outside the Japanese Kibo module.
The six member Expedition 55 crew poses for a portrait in the Japanese Kibo laboratory module.
Crew: Captain Scott ”Maker” Tingle, USN
ISS Location: Low Earth Orbit
Earth Date: 4 March 2018
Earth Time (GMT): 13:30
Wow, time has gone by extremely fast. The mid-deployment phase will be short-lived for me this time, as the new crew (Drew Feustel, Ricky Arnold, and Oleg Artemyev) will arrive on March 23rd, and then we have at least one spacewalk on the 29th, followed by a planned SpaceX Dragon cargo craft arrival on the 4th of April. It’s a little strange being up here with only two other crewmates. We are still very busy, but the overall work effort is half of what it was just a week ago. My crewmate, Nemo (Norishige Kanai), and I are trying to use the time to prepare for the upcoming very busy schedule, and we have been having some great success getting a ton of details taken care of.
I can’t believe that Expedition 55 is already over. Today is Sunday, and we will depart the International Space Station (ISS) next Sunday morning. 168 days in space. There have been many challenging moments, but even more positive highlights of our time on ISS. The new crew from the Soyuz MS-08 spacecraft (Oleg Artymyev, Drew Feustel, and Ricky Arnold) joined Norishige Kanai (Nemo), Anton Shkaplerov, and I last March. Since then, we have completed two spacewalks, captured and released the SpaceX Dragon-14 cargo craft, captured the Cygnus OA-9 cargo craft, and completed a myriad of maintenance and science activities. The team on the ground controlling, monitoring, supporting, and planning has been amazing. It is always great to work with them, and especially during the moments where the equipment, tools, procedures or crew need help. It is incredible to see how much a good team can accomplish when methodically placing one foot in front of the other. I have been lucky in that the first crew (Mark Vande Hei, Joe Acaba and Alexander Misurkin (Sasha)) and the second crew (Drew, Ricky and Oleg) were all amazing to work with. I do believe the planets aligned for my mission onboard ISS. Drew and Ricky have been friends forever, and listening to them nip at each other provided a ton of great humor for the ground and for us. Their one-liners to each other reminded me of several scenes from the movie Space Cowboys. This a great example that happened as I was writing this log entry:
Ricky: Hey Maker, is this your smoothie?
Maker: No.
Ricky: It must Drew’s.
Drew: Hey Ricky, don’t drink my smoothie.
Ricky: What smoothie? This one has my name on it (as he writes his name on it).
Drew: Okay, Grandpa Underpants, hands off my smoothie.
Ricky: Okay, Feustelnaut – we have rules around here, so this is my smoothie now!
All: Much laughing.
To quote my kids: “LOL!”
One the hardest things to do in space is to maintain positive control of individual items such as tools, spare parts, fasteners, etc. We try very hard not to lose things, but even with all of the attention and positive control, items can still float away and disappear. We generally hold items in a crew transfer bag (CTB). Inside the CTB are many items for the system that it supports. When the CTB is opened, the items are free floating inside the bag and tend to escape. It is very difficult to maintain control of the items – especially if they are small, do not have Velcro, or when the daily schedule is so tight that we are rushing to stay on time. We always try to close the CTB’s and Ziploc bags after removing or replacing each item to maintain positive control, but this takes much more time to do for individual items, and if the timeline is tight, we absorb more risk by rushing. The same applies for tools, which we usually keep in a Ziploc bag while working on individual systems and tasks. Last month, I was installing a new low temperature cooling loop pump that had failed a month or two earlier. I gathered the needed tools into my modified (with Velcro) Ziploc bag as I always do and floated over to the work area. When I got there, one of the tools that I had gathered was missing. I looked for 30 minutes, and could not find it. Lost items are very hard to find because the items that escape are usually barely moving and blend in with the environment very quickly. A lost item could be right in front of us and we would never see it. Our crew, after learning these lessons, decided that when anyone loses something, we would tell the other crew members what we had lost with a general location. This has had a huge impact on finding items. If a different crew member can help within the first minutes of losing an item, the new crew member has an excellent chance of finding the item. We have proven this technique several times during the expedition – and Nemo was the very best at quickly finding lost items. But, in my case, we still could not find the missing tool. Our amazing ground team understood and vectored me to a replacement tool and I finished the job. I spent the next 3 weeks watching, looking, and never forgetting about the lost tool. Then, one day last week, Oleg came to the lab and handed us a tool he had found in his Soyuz spacecraft, way on the aft side of the ISS. Amazing. We finally found the tool and I was happy again. This was a lucky ending. ISS has many corners, crevices and hard-to-see areas where missing items could hide and never be found.
We captured a Cygnus cargo craft last Thursday. I was very impressed with the entire team. Our specialists and training professionals in Mission Control did a great job preparing the necessary procedures and making sure we were proficient and ready to conduct operations. The robotic arm is a wonderful system that we could not operate ISS without. Being in space, however, it has some very unique handling qualities. If you think about a spring-mass-damper system just as you did during physics or control theory class, and then remove the damper, you will see a system that is very subject to slow rate oscillations. In test pilot terms, damping ratio is very low and the latency is well over a half of a second. Also in test pilot terms – this is a pilot-induced oscillations (PIO) generator. These characteristics require crew to “fly” the robotic arm using open-loop techniques, which requires a huge amount of patience. Test pilots are sometimes not very patient, but understanding the system and practicing with the incredible simulators that our ground team built and maintain help keep our proficiency as high as possible. The capture went flawlessly, and I was very impressed with the professionalism across the board – crew, flight controllers, and training professionals – what a great job!
Drew, Ricky and I got to play guitar a few times while on ISS. This was fun! Drew connected pickups to the acoustic guitars and then connected the pickups to our tablets for amplification. I’ve never heard an acoustic guitar sound like an electric guitar amped up for heavy metal before. We had a great jam on the song “Gloria”, and a couple others. Rock on!
Last night we had our last movie night. The entire crew gathered in Node 2 and watched Avengers Infinity Wars on the big screen. We enjoy each other’s company, as we did during Expedition 54, and this was a welcome break from the daily grind of trying to complete the required stowage, maintenance and science activities while preparing for departure.
Our last full weekend here on ISS. I gave myself a haircut. We usually clean our spaces each weekend to make sure we can maintain a decent level of organization, efficiency and morale. This weekend is no different, and it is time for me to vacuum out all of our filters and vents. You’d be amazed at what we find!
The top 5 things I will miss when I am no longer in space:
The incredible team that supports ISS operations from our control centers
The camaraderie onboard ISS
The breathtaking view of the Earth, Moon, Sun and Stars
Floating/flying from location to location with very little effort
The next three crew members to launch to the space station and their backups pose for a portrait at the Cosmonaut Hotel in Baikonur, Kazakhstan. From left are Expedition 56-57 crew members Alexander Gerst, Sergei Prokopyev and Serena Auñón-Chancellor with back up crew members Anne McClain, Oleg Kononenko and David Saint-Jacques.
The Expedition 55 crew is unloading the Orbital ATK Cygnus space freighter today ahead of next week’s crew swap at the International Space Station. On top of the cargo transfers and crew departure activities, the orbital residents are also running space experiments to benefit humans on Earth and astronauts in space.
NASA Flight Engineer Scott Tingle has been working inside Cygnus today unpacking station hardware and research gear delivered just last week. He removed science kits and spacewalking gear and stowed them throughout the orbital lab.
Tingle finally wrapped up his workday with his homebound crewmates Commander Anton Shkaplerov and Flight Engineer Norishige Kanai preparing for their June 3 return to Earth. The trio packed personal items and other gear inside the Soyuz MS-07 spacecraft that will parachute the crew to a landing in Kazakhstan after 168 days in space.
Back on Earth, Soyuz MS-09 Commander Sergey Prokopyev and Flight Engineers Serena Auñón-Chancellor and Alexander Gerst are in final training in Kazakhstan ahead of their June 6 launch to the space station. The Expedition 56-57 trio will orbit Earth for two days before docking to the Rassvet module to begin a six-month stay in space.
NASA astronauts Ricky Arnold and Drew Feustel, who are staying in space until Oct. 4, familiarized themselves today with the new Cold Atom Lab’s hardware and installation procedures. The device, delivered last week on Cygnus, will research what happens to atoms exposed to temperatures less than a billionth of a degree above absolute zero.
The two later split up as Arnold set up thermal hardware that will help scientists understand the processes involved in semiconductor crystal growth. Feustel moved on and began uninstalling a plant biology facility, the European Modular Cultivation System (EMCS), which has finalized its research operations. The EMCS will now be readied for return to Earth aboard the next SpaceX Dragon cargo craft.