Though We Walk Thru the Valley of Death We Fear No Ubehebe's

Many people who have not been to DeathValley think of it as an inhospitable patch of sand in the middle of a desert. Although itis one of the driest areas on the planet, the land supports so much life.

Interdisciplinary studies are an important way to bring togethermany concepts. Much of education today is very segregated, especially in highschool: history, math, biology, earth science, and everything else is learnedseparately. However, it has been demonstrated that interdisciplinary studiescan grab and maintain students’ interests as well as helping them retainknowledge longer.

All of the places that we visited today can be used as aninterdisciplinary site. We started off at Scotty’s Castle and along the ride wenoticed many significant geological formations. The history of Scotty’s Castlecan be tied into the time period, with a lesson about the other economic andhistorical events that happened in the 1930s and 1940s. Also, along the ride, thetypes minerals that are abundant in the desert area can be discussed, andstudents can learn how to identify geological features, such as alluvial fansand fault lines.

We then headed to the Ubehebe craters, which are a greatanalog to formations to look for on Mars. These craters are Maar craters, wheremagma meets groundwater. The water table boils and released pressure in avolcanic eruption. The craters are what are left over after such eruptions.Many students may believe a crater is only from an asteroid or from amountainous volcano, so this site affords an opportunity to learn about allsorts of volcanic features.Weended our long day at Badwater Basin, which is one of the lowest places in theworld, at -282 feet. This used to be a sea, and this place could be used totalk about watersheds and how desertification occurs over time. We canincorporate math into this by looking at negative numbers, and students cancompare the sea levels of the lowest places in the world. This was a very longbut rewarding day as we got to take in all the beauty of Death Valley.

Desert Desideratum Mathematica

TodayI was able to spend time with Jane Curnutt and Ernesto Gomez and Keith Schubertfrom the Computer Science and Engineering program at San Bernardino working onthe Cellular Automata. We started talking about the radius and theneighborhoods that surrounding each cell, which is represented by a square.Each square has a radius of either 1, 2 or 3, each having a differentneighborhood size. A radius one has a length of a side of a neighborhood squareof 3 squares surrounding it, counting itself and diagonals. A radius of 2 has alength of a side of a square of 5, and a radius of 3 has a length of a side ofthe neighborhood of 7. The cell looks around in the neighborhood and if theyfind a square within their radius neighborhood, then they follow the rules set.For example we set the rules for the neighborhood of 0 to be unchanging. Therule for the neighborhood of 1 for life and the neighborhood of 2 for death.There are more neighborhoods to be set, but for the sake of the example we justset those different. We put one center square in the sea of brown, and clickedthe button for an iteration, and watched the square grow. The space around thesquare grew, all the surrounding squares filled in with green, including thediagonals, creating a 3×3 square. We continued pushing the iteration button tosee what would happen and the patterns that were created were symmetrical. Janepointed out that the square started out with a 1, would create the same patternas a 3×3 starting square as long as the rules for the neighborhoods were thesame.

Inorder to understand the working of the program, we talked about how to bringthe program into a classroom. We created an activity involving chairs andpeople acting like the cells. We talked about how to teach a student to thinkabout the radius and the neighborhoods. The activity would have a set of chairsset up like a square and have a person sit in the middle or somewhere in thesquare of chairs, acting like a cell. They would sit down and reach around tofigure out how big the length of the neighborhood side is based on the rule ofradius. We set it like a radius 1 and had one person sit in the square and lookto see if they can reach out to the chairs that is 1 away. Since all of thechairs can be reached, they count themselves and say that has 1 which meansthat cell grew. We put in people where the squares that were empty. Andcontinued the activity according to the rules we set up.

Ireally enjoyed working with these people. I learned a lot about working in aclassroom and trying to make the program that was designed to mimic patterns ofbacteria or any form of growth pattern, can be taught to first graders inrelation to patterns and counting. The activity we created for the classroomhelped me understand how the program works. I was able to continue playing withthe program itself and figure out some more patterns just by playing aroundwith the neighborhood rules.

Cassandra Guido, California Polytechnic University San Luis Obispo 

Because It Was There – The Conquest of Mt. Doom

Adventuresin the Mojave

The first day of our adventure in the Mojave took us fromthe plains of the desert to the highest peaks of the sand dunes to the depthsof the underground volcanic caves. Driving over the day before, we were greeted by Soda Lake, a lake that insteadof water has a film of bicarbonate salt covering a bed of sulfuric mud.  Following the path to our home for theweek, we drove by a man-made pond with a fountain in the middle inhabited by anendangered species of fish called a Chub. The backdrop of our new home was the endless plains of the MojaveDesert.

The rise of the sun over the desert heralded the first dayof our five day journey to find the key to the possibility of alien life.   We piled into five cars andcaravanned, leaving civilization behind us in our search for biological soilcrusts, referred to as BSC, in the vast plains of the desert.  Though its appearance resembles that ofblack, squishy mold; BSCs are a complex community of cyanobacteria, moss andlichen that represent how life can survive in extreme environments.  The objective was to find a largeenough population that would allow us to take samples without decimating thepopulation since they take about fifty years to resurface.   The samples were retrieved andwill be analyzed in a lab in order to discover the mechanisms by which life cansurvive in such an extreme environment.  Our next task was to find a section of desert that wouldallow us to take a sample of barren land and compare this to the life elementfound in the BSC samples that we collected. 

We continued our journey through the desert to the seamingoasis of Kelso, a World War II boomtown, for lunch and stumbled upon a gem inthe form of an educational video. We learned a lot about our next stop, the Cima Sand Dunes.  These dunes were beautiful butdeceitful.  Despite their seeminglyserene exterior they soon proved to be our greatest challenge.  Our mission was to reach the highestpoint of the dunes in order to survey the landscape.  After about an hour of treacherous trekking, we reached thebase of the highest peak.  Wethought the most difficult part was over, but the adventure had just begun.  As we started trudging up the steep hill,soon to be nicknamed “Mt. Doom”, we discovered that the sandy texture of thesoil made it difficult to progress…for every step we took up, we slid down 0.75steps.  Although the environmentproved to be too extreme for some, the majority persevered.  After a strenuous combination of hikingand crawling, we conquered Mt. Doom and in doing so superseded our ownperceived mental and physical limitations.  After we recovered, we embraced the view and enjoyed ourfeelings of accomplishment.  Insurveying the land, we noticed that there was a distinct border of plants andshrubs along the base of the dunes. On our climb down, we encountered individual blades of grass-like plantsgrowing in the middle of the sand. The roots appeared to be endless so we hope to return in order tofurther investigate the mechanism of their survival.     

Our expedition continued through a rocky road to the LavaTubes.  We observed gaps in theEarth formed by geologically ‘young’ (approximately 10,000-15,000 years old)magma.  We then climbed down intothe caves and observed the geological formation of the caves.  It is possible that life could haveexisted at one point but due to constant human traffic, none can be observedcurrently.

Upon returning, we enjoyed a hot shower and a delicious and heartymeal followed by a very stimulating presentation and discussion aboutmicrobialites.  Then it wasstraight to bed to prepare for the next day.  Thus ended the first day of our adventures in theMojave. 

~FIN~

 

Cal Poly Pomona

Andrea Gonzalez

Alexandra Olano                 

Amina Razzak

Kara Rotunno

Sarah Saleemi

Spaceward Bound Mojave!

Back in the field for Spaceward Bound….this time a little closer to home at the CSU Desert Studies Center in Zzyzx, California!

This year’s Spaceward Bound: Mojave will again be split up into two, non-consecutive weeks: 21-25 March and 18-22 April. For this first week, we’ll be exploring Mojave National Monument, Death Valley National Park, and the surrouding regions including Amboy Crater and the Kelso Dunes.

During these trips teachers and education majors from California Polytechnic State University, California State University, San Bernardino, and San Francisco State University will be learning how to evaluate microbes in the desert soil crusts; make batteries out of ‘dry’ lake bed muds, launch earth observing balloons, remotely control rovers, in addition to other geology and soil experiments.

There are several ways you can follow along with Spaceward Bound Mojave:

Follow our GPS tracks on Everytrail:
http://www.everytrail.com/view_trip.php?trip_id=1007079

Search Twitter for the hashtag #SBM1 (meaning Spaceward Bound Mojave week 1)
http://search.twitter.com/search?q=SBM1

Look for photos on Flickr:
http://www.flickr.com/photos/motorbikematt/sets/72157626188853553/

Stay tuned here for more!