A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 4:30 p.m. EDT on April 2, 2018, carrying the SpaceX Dragon resupply spacecraft. On its 14th commercial resupply services mission for NASA, Dragon delivered supplies, equipment and new science experiments for technology research to the space station. Photo credit: NASA/Tony Gray, Tim Powers, Tim Terry
Meteorologists with the U.S. Air Force 45th Space Wing predict a 90 percent chance of favorable weather for liftoff of the SpaceX Falcon 9 rocket for the company’s 16th commercial resupply services mission to the International Space Station. Launch is scheduled for Wednesday, Dec 5 at 1:16 p.m. EST from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. On launch day, the primary weather concern is liftoff winds.
A SpaceX Falcon 9 rocket soars upward after lifting off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 4:30 p.m. EDT, on April 2, 2018, carrying the SpaceX Dragon resupply spacecraft. On its 14th commercial resupply services mission for NASA, Dragon delivered supplies, equipment and new science experiments for technology research to the space station. Photo credit: NASA/Tony Gray, Tim Powers, Tim Terry
Meteorologists with the U.S. Air Force 45th Space Wing predict a 60 percent chance of favorable weather for liftoff of the SpaceX Falcon 9 rocket for the company’s 16th commercial resupply services mission to the International Space Station. Launch is scheduled for Tuesday, Dec 4 at 1:38 p.m. EST from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. On launch day, the primary weather concerns are violation of the thick cloud layer and cumulus cloud rules and flight through precipitation.
A two-stage SpaceX Falcon 9 launch vehicle lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on June 29, 2018. SpaceX is targeting 1:38 p.m. EST Tuesday, Dec. 4, for the launch of its 16th resupply mission to the International Space Station. Photo credit: NASA
SpaceX’s 16th commercial resupply mission to the International Space Station for NASA is targeted to launch at 1:39 p.m. EST Tuesday, Dec. 4, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Join us Monday, Dec. 3, as we start SpaceX CRS-16 launch week coverage with prelaunch events on NASA Television and the agency’s website.
9:30 a.m. – What’s on Board science briefing from NASA’s Kennedy Space Center in Florida. The briefing will highlight the following research:
Jill McGuire, project manager, NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will discuss RRM3.
Dr. Ralph Dubayah, principal investigator, University of Maryland, and Bryan Blair, deputy principal investigator, Goddard, will discuss GEDI.
Dr. Elaine Horn-Ranney, principal investigator, Tympanogen, will discuss an investigation into novel wound dressings and how antibiotics can be directly released on wound sites.
Nicole Wagner, LambdaVision, will discuss the Enhancement of Performance and Longevity of a Protein-Based Retinal Implant.
A Falcon 9 rocket stands ready for lift off at Cape Canaveral Air Force Station’s Space Launch Complex 40 in this file photo from April 8, 2016, for SpaceX CRS-8. Photo credit: NASA/Kim Shiflett
Preparations continue as NASA’s commercial cargo provider, SpaceX, is getting ready to launch its 14th resupply mission to the International Space Station. Liftoff is scheduled for 4:30 p.m. EDT Monday, April 2.
Weather forecasters with the U.S. Air Force’s 45th weather squadron at Patrick Air Force Base call for a 80 percent chance for favorable conditions for launch. The primary launch weather concerns are flight through precipitation and cumulus clouds with the showers.
Packed with almost 5,800 pounds of research material, crew supplies and hardware, the SpaceX Dragon spacecraft will launch on a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.
You may follow the prelaunch briefings and the countdown taking place at NASA’s Kennedy Space Center on NASA Television at: https://www.nasa.gov/nasalive
Today, April 1 2:30 p.m. – What’s on Board science briefing 4 p.m. – Prelaunch news conference with representatives from NASA’s International Space Station Program, SpaceX and the U.S. Air Force’s 45th Space Wing.
Monday, April 2 4 p.m. – Launch coverage begins for liftoff scheduled for 4:30 p.m. 6:30 p.m. – Post launch news conference at Kennedy with representatives from NASA’s International Space Station Program and SpaceX.
A SpaceX Falcon 9 rocket with the Dragon spacecraft launched Dec. 15 at 10:36 a.m. EST from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Photo credit: NASA
A 4,800-pound care package is on its way to the International Space Station aboard a SpaceX Dragon spacecraft. The company’s 13th commercial cargo mission to resupply the space station began at 10:36 a.m. EST with liftoff aboard a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.
After a successful climb into space, the Dragon spacecraft now is in orbit with its solar arrays deployed and drawing power. The rocket’s first stage flew back for a successful landing at SpaceX’s Landing Zone One at Cape Canaveral Air Force Station.
“This was a fantastic way to end the year for SpaceX east coast launches,” said Jessica Jensen, director, Dragon Mission Management with SpaceX. “It was a great launch.”
The Dragon spacecraft will deliver science, research, crew supplies and hardware to the orbiting laboratory. Science experiments include the Total and Spectral Irradiance Sensor (TSIS-1) that will measure the Sun’s energy input to Earth, the Space Debris Sensor (SDS) that will directly measure the orbital debris environment around the space station for two to three years, and the Advanced Colloids Experiment-Temperature 7 (ACE-T-7) investigation, which involves the design and assembly of 3-D structures from small particles suspended in a fluid medium, structures that are vital to the design of advanced optical materials and electronic devices. Read more at https://go.nasa.gov/2mMUdSY.
Live coverage of the rendezvous and capture of the Dragon spacecraft will begin at 4:30 a.m. Sunday, Dec. 17 on www.nasa.gov/live, with installation coverage set to begin at 7:30 a.m. Astronauts aboard the station will capture the Dragon using the space station’s robotic arm and then install it on the station’s Harmony module. The Dragon spacecraft will spend about one month attached to the space station, returning to Earth in mid-January with results of previous experiments.
Several thousand pounds of supplies, equipment and experiments are on their way to the crew members aboard the orbiting laboratory. Dragon reached its preliminary orbit and its solar arrays have been deployed. A series of thruster firings are scheduled to allow the Dragon spacecraft to rendezvous with the space station on Dec. 17. Installation coverage is set to begin at 7:30 a.m. Watch it live at www.nasa.gov/live.
NASA astronauts Mark Vande Hei and Joe Acaba will capture the Dragon using the space station’s robotic arm and then install it on the station’s Harmony module. The Dragon spacecraft will spend about one month attached to the space station, returning to Earth in mid-January with results of previous experiments.
Dragon’s solar arrays are unfurling and the spacecraft is on course to deliver almost 4,800 pounds of cargo to the International Space Station early Sunday. Live coverage of the rendezvous and capture will begin at 4:30 a.m. Sunday, Dec. 17 on www.nasa.gov/live, with installation coverage set to begin at 7:30 a.m.
The Falcon 9 rocket’s first-stage engines have finished their burn and separated from the vehicle. As the second stage continues the flight, the first stage will aim for a landing at Cape Canaveral Air Force Station
The SpaceX Falcon 9 rocket with the Dragon spacecraft launches from Space Launch Complex 40 at 10:36 a.m. EST at Cape Canaveral Air Force Station in Florida. Photo credit: NASA
T-0, ignition and liftoff of the SpaceX Falcon 9 rocket and Dragon spacecraft, setting off on the company’s 13th mission to deliver supplies, equipment and science materials to the International Space Station. The vehicle is quickly climbing away from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.