NASA TV Coverage Set for SpaceX’s 27th Resupply Services Launch

The SpaceX Falcon 9 rocket carrying the Dragon cargo spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on the company’s 26th commercial resupply services mission for the agency to the International Space Station.
The SpaceX Falcon 9 rocket carrying the Dragon cargo spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Nov. 26, 2022, on the company’s 26th commercial resupply services mission for the agency to the International Space Station. Liftoff was at 2:20 p.m. EST. Photo credit: NASA/Kevin O’Connell & Kevin Dav

NASA and SpaceX are targeting 8:30 p.m. EDT Tuesday, March 14, to launch the company’s 27th commercial resupply mission to the International Space Station. Liftoff will be from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Launch timing is dependent upon the undocking and return of NASA’s SpaceX Crew-5.

On Monday, March 13, tune in to a prelaunch media teleconference at 8 p.m. EDT (or no earlier than one hour after completion of the Launch Readiness Review) with the following participants:

  • Phil Dempsey, transportation integration manager, International Space Station Program
  • Dr. Meghan Everett, deputy chief scientist, NASA’s International Space Station Program Research Office
  • Sarah Walker, director, Dragon Mission Management, SpaceX
  • Mike McAleenen, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron

Audio of the teleconference will stream live on the agency’s website. Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 5 p.m. EDT on Monday, March 13, at: ksc-newsroom@mail.nasa.gov.

On Tuesday, March 14, at 11 a.m. EDT, a science media teleconference will take place with the following participants:

  • Dr. Meghan Everett, deputy chief scientist, NASA’s International Space Station Program Research Office
  • Shane Johnson, former HUNCH student and current research assistant at the University of Texas at Austin, who will discuss the HUNCH Ball Clamp Monopod experiment
  • Dr. Mita Hajime, professor at the Fukuoka Institute of Technology and principal investigator for the Tanpopo-5 experiment
  • Dr. Ralf Moeller, microbiologist at the German Aerospace Center in Cologne, Germany, and principal investigator of the BIOFILMS study
  • Devin Mair, Johns Hopkins university doctoral candidate, who will discuss Engineered Heart Tissues-2
  • Dr. Dilip Thomas, post-doctoral researcher at the Stanford Cardiovascular Institute, who will discuss the Cardinal Heart 2.0 investigation
  • Logan Torres, engineer at IRPI in Wilsonville, Oregon, who will discuss the CapiSorb Visible System study

Audio of the teleconference will stream live on the agency’s website. Following this, live launch coverage will begin at 8 p.m. EDT on NASA TV, the NASA app, and the agency’s website.

To view full coverage of the mission, click here.

 

 

ELaNa 50: What’s on Board?

LightCube team members inspect the CubeSat prior to integration into the deployer. From left to right: David Ordaz Perez, Chandler Hutchens, Sam Cherian, Christopher McCormick, Ashley Lepham, Raymond Barakat.
LightCube team members inspect the CubeSat prior to integration into the deployer. From left to right: David Ordaz Perez, Chandler Hutchens, Sam Cherian, Christopher McCormick, Ashley Lepham, Raymond Barakat. Photo credit: Jaime Sanchez de la Vega

On NASA’s next Educational Launch of Nanosatellites (ELaNa) mission, a pair of small satellites, called CubeSats, will hitch a ride on SpaceX’s 27th commercial resupply services mission to the International Space Station for NASA.

The ELaNa 50 complement of CubeSats will launch aboard the SpaceX Falcon 9 and Dragon spacecraft this March, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida, along with additional supplies, equipment, and science investigations to be delivered to the crew aboard the station.

The university-built CubeSats are going to space as part of NASA’s CubeSat Launch Initiative (CSLI). Once deployed, the CubeSats will demonstrate technologies to conduct atmospheric experiments and reduce space debris, as well as provide people on Earth the opportunity for an immediate and powerful connection with an object in space.

First Launch for The Natural State

The CSLI program will launch its first CubeSat from Arkansas. Developed at the University of Arkansas, Fayetteville, ARKSAT-1, is a CubeSat measuring 1U, or unit, (about 4 inches cubed). It will illuminate an LED from orbit and use a ground spectrometer to track and perform atmospheric measurements.

ARKSAT-1 team members Samuel Cano (left) and Charles Smith perform final checkout tests on the ARKSAT-1 flight model, with its electronics stack engineering model also shown.
ARKSAT-1 team members Samuel Cano (left) and Charles Smith perform final checkout tests on the ARKSAT-1 flight model, with its electronics stack engineering model also shown. Photo credit: University of Arkansas

“It might be the first time this instrument technology is purposefully designed to be done with a CubeSat,” said Adam Huang, principal investigator. “It could be developed into future satellite-based systems using cooperative formations of CubeSats.”

ARKSAT-1’s secondary objective sets out to demonstrate a way to help alleviate the problem of space debris with a lightweight Solid State Inflatable Balloon (SSIB) that can be used to deorbit small satellites after a mission ends. When the balloon on ARKSAT-1 inflates, it will greatly increase the ARKSAT-1’s aerodynamic drag, thereby helping the satellite re-enter and disintegrate safely in Earth’s atmosphere. If successful, the SSIB technology could help reduce the amount of time a small satellite remains “space junk” in low-Earth orbit after its mission has ended.

Helping Others See the Light

LightCube, a 1U CubeSat developed by Arizona State University, Tempe, in collaboration with Vega Space Systems and Mexico’s CETYS Universidad, features a flash bulb that can be controlled remotely by amateur radio operators on Earth who will be able to activate the satellite to produce a brief flash visible from the ground.

The LightCube CubeSat is inserted into the Nanoracks CubeSat Deployer.
The LightCube CubeSat is inserted into the Nanoracks CubeSat Deployer. Photo credit: Nanoracks

“LightCube provides potential users worldwide with the opportunity to telecommand a spacecraft and observe a tangible and immediate response in the night sky,” said Jaime Sanchez de la Vega, principal investigator. “The team hopes that this process inspires users to learn about space, satellites, and related concepts.”

The flash will appear at a brightness similar to the International Space Station, and several commonly available smartphone and computer apps will show when LightCube is overhead and where to look in the sky to see its flash.

Considering the observational environment, the LightCube team conducted an in-depth assessment to confirm that the brief flashes generated will not have a significant impact on astronomy.

In selecting the CubeSats for ELaNa 50, CSLI continues furthering its goal of providing U.S. educational institutions, nonprofits with an education/outreach component, informal educational institutions (museums and science centers), and NASA centers with access to space at a low cost. Through CSLI, NASA’s Launch Services Program pairs selected CubeSats with launches best suited for each CubeSat’s mission and ready date, taking into consideration the planned orbit and any special constraints the CubeSat’s mission may have.

For more information about NASA’s CSLI, visit:

https://www.nasa.gov/directorates/heo/home/CubeSats_initiative