Webb Reveals Shells of Dust Surrounding Brilliant Binary Star System

The latest image from NASA‘s James Webb Space Telescope is a new perspective on the binary star Wolf-Rayet 140, revealing details and structure in a new light. Astronomer Ryan Lau of NSF’s NOIRLab, principal investigator of the Webb Early Release Science program that observed the star, shares his thoughts on the observations.

“On the night that my team’s Early Release Science observations of the dust-forming massive binary star Wolf-Rayet (WR) 140 were taken, I was puzzled by what I saw in the preview images from the Mid-Infrared Instrument (MIRI). There seemed to be a strange-looking diffraction pattern, and I worried that it was a visual effect created by the stars’ extreme brightness. However, as soon as I downloaded the final data I realized that I was not looking at a diffraction pattern, but instead rings of dust surrounding WR 140 – at least 17 of them.

A bright white point of light is surrounded by ten to fifteen regularly spaced, hazy rings at its bottom, right, and upper right. The central point, where the stars are located, has a rough hexagon shape. The innermost ring is highlighted blueish white and is much brighter to the right. The outer rings fade from view to the upper left, with only a few close rings visible there. The central light seems to highlight the misshapen rings like a spotlight, with rays coming out diagonally from the upper left to lower right. One ray illuminates even more rings as it travels to the upper right.
Shells of cosmic dust created by the interaction of binary stars appear like tree rings around Wolf-Rayet 140. The remarkable regularity of the shells’ spacing indicates that they form like clockwork during the stars’ eight-year orbit cycle, when the two members of the binary make their closest approach to one another. In this image, blue, green, and red were assigned to Webb’s Mid-Infrared Instrument (MIRI) data at 7.7, 15, and 21 microns (F770W, F1500W, and F2100W filters, respectively). Credit: NASA, ESA, CSA, STScI, JPL-Caltech. Download/View the full-resolution version and supporting visuals from the Space Telescope Science Institute.

“I was amazed. Although they resemble rings in the image, the true 3D geometry of those semi-circular features is better described as a shell. The shells of dust are formed each time the stars reach a point in their orbit where they are closest to each other and their stellar winds interact. The even spacing between the shells indicates that dust formation events are occurring like clockwork, once in each eight-year orbit. In this case, the 17 shells can be counted like tree rings, showing more than 130 years of dust formation. Our confidence in this interpretation of the image was strengthened by comparing our findings to the geometric dust models by Yinuo Han, a doctoral student at the University of Cambridge, which showed a near-perfect match to our observations.

“One of the biggest surprises was how many shells the telescope was able to detect. The shells furthest from the binary star have traversed over 70,000 times the distance from Earth to the Sun, at speeds of around 6 million miles per hour, through the harsh environment around a WR star—some of the hottest and most luminous stars known. The survival of these distant shells shows that the dust formed by WR binaries like WR 140 will likely survive to enrich the surrounding interstellar environment. However, it wasn’t enough for us to see these dusty shells. We wanted to know their spectroscopic signature and chemical composition. What will they add to the interstellar medium?

“With the Medium-Resolution Spectroscopy (MRS) mode on MIRI, we obtained the first spatially resolved mid-infrared spectra of a dust-forming WR binary in our observation of WR 140, and were able to directly probe the chemical signatures of its dust shells. Broad and prominent features in the spectral lines at 6.4 and 7.7 microns told us that the dust was composed of compounds consistent with Polycyclic Aromatic Hydrocarbons (PAHs). This carbonaceous material plays an important role in the interstellar medium and the formation of stars and planets, but its origin is a long-standing mystery. With the combined results of JWST’s MRS spectra and MIRI imaging, we now have evidence that WR binaries can be an important source of carbon-rich compounds that enrich the interstellar environment of our galaxy, and likely galaxies beyond our own.”

About the author:
Ryan Lau is an Assistant Astronomer at the National Science Foundation’s NOIRLab. His team’s observations of WR 140 are the results of the Director’s Discretionary-Early Release Science program 1349. Learn more about the findings here.

Editor’s Note: This post highlights data from a paper appearing today in Nature Astronomy.

NASA Webb Image Coming This Week

NASA will share a new image or spectrum from the James Webb Space Telescope at least every other week on the mission’s blog. This week, check the blog on Wednesday, Oct. 12 at 11 a.m. EDT for a new image highlighting a nebula surrounding a pair of stars.

In the meantime, learn more about what to expect as Webb observations make their way from raw data to published, peer-reviewed science.

News Media Contacts

Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov

Laura Betz
Goddard Space Flight Center, Greenbelt, Md.
301-286-9030
laura.e.betz@nasa.gov

Webb, Hubble Team Up to Trace Interstellar Dust Within a Galactic Pair

Editor’s Note: This post highlights data from Webb science in progress, which has not yet been through the peer-review process. Here, Webb interdisciplinary scientist Rogier Windhorst and his team discuss their observations.

“We got more than we bargained for by combining data from NASA’s James Webb Space Telescope and NASA’s Hubble Space Telescope! Webb’s new data allowed us to trace the light that was emitted by the bright white elliptical galaxy, at left, through the winding spiral galaxy at right – and identify the effects of interstellar dust in the spiral galaxy. This image of galaxy pair VV 191 includes near-infrared light from Webb, and ultraviolet and visible light from Hubble.

The majority of the image shows the black background of space. Two large, very bright galaxies dominate the center of the image. The elliptical galaxy at left is extremely bright at its circular core, with dimmer white light extending to its transparent circular edges. At right is a bright spiral galaxy. It also has a bright white core, but has red and light purple spiral arms that start at the center and turn clockwise going outward. They end in faint red and appear to overlap the elliptical galaxy at left. Throughout the scene are a range of distant galaxies, the majority of which are very tiny and red, appearing as splotches.
Researchers traced light that was emitted by the bright white elliptical galaxy on the left through the spiral galaxy at right. As a result, they were able to identify the effects of interstellar dust in the spiral galaxy. Webb’s near-infrared data also shows us the galaxy’s longer, extremely dusty spiral arms in far more detail, giving them an appearance of overlapping with the central bulge of the bright white elliptical galaxy on the left, though the pair are not interacting. In this image, green, yellow, and red were assigned to Webb’s near-infrared data taken in 0.9, 1.5, and 3.56 microns (F090W, F150W, and F356W respectively). Blue was assigned to two Hubble filters, ultraviolet data taken in 0.34 microns (F336W) and visible light in 0.61 microns (F606W). Read the full description and download the image files by clicking or tapping the image above. Credit: NASA, ESA, CSA, Rogier Windhorst (ASU), William Keel (University of Alabama), Stuart Wyithe (University of Melbourne), JWST PEARLS Team

“Webb’s near-infrared data also show us the galaxy’s longer, extremely dusty spiral arms in far more detail, giving the arms an appearance of overlapping with the central bulge of the bright white elliptical galaxy on the left. Although the two foreground galaxies are relatively close astronomically speaking, they are not actively interacting.

“VV 191 is the latest addition to a small number of galaxies that helps researchers like us directly compare the properties of galactic dust. This target was selected from nearly 2,000 superimposed galaxy pairs identified by Galaxy Zoo citizen science volunteers.

“Understanding where dust is present in galaxies is important, because dust changes the brightness and colors that appear in images of the galaxies. Dust grains are partially responsible for the formation of new stars and planets, so we are always seeking to identify their presence for further studies.

The majority of the image shows the black background of space. Two large, very bright galaxies dominate the center of the image. At right is a bright spiral galaxy. It also has a bright white core, but has red and light purple spiral arms that start at the center and turn clockwise going outward. The elliptical galaxy at left is extremely bright at its circular core, with dimmer white light extending to its transparent circular edges. A light white box overlays the elliptical galaxy and reappears at the bottom left, showing the area in a larger view. A stretched red arc appears above the elliptical galaxy at 10 o’clock and a red dot appears at 4 o’clock.
Above the white elliptical galaxy at left, a faint red arc appears in the inset at 10 o’clock. This is a very distant galaxy whose appearance is warped. Its light is bent by the gravity of the elliptical foreground galaxy. Plus, its appearance is duplicated. The stretched red arc is warped where it reappears – as a dot – at 4 o’clock. In this image, green, yellow, and red were assigned to Webb’s near-infrared data taken in 0.9, 1.5, and 3.56 microns (F090W, F150W, and F356W respectively). Blue was assigned to two Hubble filters, ultraviolet data taken in 0.34 microns (F336W) and visible light in 0.61 microns (F606W). Read the full description and download the image files by clicking or tapping the image above. Credit: NASA, ESA, CSA, Rogier Windhorst (ASU), William Keel (University of Alabama), Stuart Wyithe (University of Melbourne), JWST PEARLS Team

“The image holds a second discovery that’s easier to overlook. Examine the white elliptical galaxy at left. A faint red arc appears in the inset at 10 o’clock. This is a very distant galaxy whose light is bent by the gravity of the elliptical foreground galaxy – and its appearance is duplicated. The stretched red arc is warped where it reappears – as a dot – at 4 o’clock. These images of the lensed galaxy are so faint and so red that they went unrecognized in Hubble data, but are unmistakable in Webb’s near-infrared image. Simulations of gravitationally lensed galaxies like this help us reconstruct how much mass is in individual stars, along with how much dark matter is in the core of this galaxy.

“Like many Webb images, this image of VV 191 shows additional galaxies deeper and deeper in the background. Two patchy spirals to the upper left of the elliptical galaxy have similar apparent sizes, but show up in very different colors. One is likely very dusty and the other very far away, but we – or other astronomers – need to obtain data known as spectra to determine which is which.”

About the authors:

Webb interdisciplinary scientist Rogier Windhorst of Arizona State University and his team obtained the data used in this image from early results of the Prime Extragalactic Areas for Reionization and Lensing Science (PEARLS) JWST Guaranteed Time Observation (GTO) programs, GTO 1176 and 2738. Additional data from Hubble’s STARSMOG snapshot program (SNAP 13695) and GO 15106, were added. Jake Summers, also of Arizona State, performed the pipeline data reduction. The dust analysis was led by William Keel of the University of Alabama, while the Hubble data acquisition was led by Benne Holwerda of the University of Louisville in Kentucky. The detailed gravitational-lensing analysis was conducted by Giovanni Ferrami and Stuart Wyithe, both of the University of Melbourne, Australia and ASTRO 3D, Australia.

Related science papers:

Webb’s PEARLS: dust attenuation and gravitational lensing in the backlit-galaxy system VV 191

Webb’s PEARLS: Prime Extragalactic Areas for Reionization and Lensing Science: Project Overview and First Results

NASA Webb Image Coming This Week

NASA will share a new image or spectrum from the James Webb Space Telescope at least every other week on the mission’s blog. This week, check the blog on Wednesday, Oct. 5 at 10 a.m. EDT for a new image highlighting a galaxy pair.

In the meantime, learn more about what to expect as Webb observations make their way from raw data to published, peer-reviewed science.

News Media Contacts

Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov

Laura Betz
Goddard Space Flight Center, Greenbelt, Md.
301-286-9030
laura.e.betz@nasa.gov

Mid-Infrared Instrument Operations Update

The James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) has four observing modes. On Aug. 24, a mechanism that supports one of these modes, known as medium-resolution spectroscopy (MRS), exhibited what appears to be increased friction during setup for a science observation. This mechanism is a grating wheel that allows scientists to select between short, medium, and longer wavelengths when making observations using the MRS mode. Following preliminary health checks and investigations into the issue, an anomaly review board was convened Sept. 6 to assess the best path forward.

The Webb team has paused in scheduling observations using this particular observing mode while they continue to analyze its behavior and are currently developing strategies to resume MRS observations as soon as possible. The observatory is in good health, and MIRI’s other three observing modes – imaging, low-resolution spectroscopy, and coronagraphy – are operating normally and remain available for science observations.

Webb’s Scientific Method, What to Expect

Right now, NASA’s James Webb Space Telescope is in space capturing spectacular images and spectrum of the universe; all of these data reside in the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute (STScI), the science operations center for Webb. However, it takes time for these exciting new observations to make their way from raw data to published, peer-reviewed science.

Peer Review
Scientific peer review is a long-established, quality-control system, where new scientific discoveries are scrutinized by experts before they are published in a journal. The peer review process begins when a scientist or group of scientists completes a study of a particular object in the sky and then submits their written findings to an accredited journal for publication. The journal’s editors will then circulate the article to other scientists within the same field to gather their reviews and feedback. Only articles that meet good scientific standards, acknowledging and building upon other known works, make it through this process and are published in the journal. NASA relies on this peer-review process to ensure quality and accuracy of scientific results before sharing them with the public.

Since Webb’s discoveries are so new, they require time to be vetted by the peer-review process, and a pipeline of articles under peer review is growing as the telescope continues to make observations from its first year of planned science. This pipeline of articles will feed future Webb news as scientists with peer-reviewed articles submit their findings to the STScI news office for consideration for promotion.

Preprints 
Many Webb investigators, however, are also taking advantage of the way that the scientific publication landscape has changed in the last decade. They create draft papers that are sometimes publicly posted as “preprints” before the full peer-review process is complete. This previewing stage allows for discussion within the science community, and researchers sometimes use this feedback to improve their written papers before they formally submit to a journal. At this stage, papers, imagery, figures, and initial analyses are public – but not yet considered part of the fully peer-reviewed scientific literature.

NASA and STScI, in collaboration with the science community, may share some imagery or spectra from papers prior to peer review, much like the recently published exoplanet images, as well as images from Webb data publicly available in the MAST archive. Those shared, but still awaiting peer review, will be labeled appropriately to describe where in the process the image or data and results are. Important scientific conclusions and discoveries from these images will be shared later, after peer review.

What to Expect
Starting the week of Sep. 19, NASA will share a new Webb image or spectrum at least every other week. Check the Webb blog every other Monday to find out when to expect that week’s image.

NASA will also hold media availability calls with subject matter experts as needed to answer questions about the latest images, spectra, and science from Webb.

-Thaddeus Cesari, NASA’s Goddard Space Flight Center

 

News Media Contacts

Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov

Laura Betz
Goddard Space Flight Center, Greenbelt, Md.
301-286-9030
laura.e.betz@nasa.gov

 

How to Follow Webb’s Next Steps

This illustration depicts NASA’s James Webb Space Telescope – the largest, most powerful, and most complex space science telescope ever built – fully unfolded in space. Credits: NASA/Adriana Manrique Gutierrez

Now that NASA’s James Webb Space Telescope’s first images and data are out, you might be wondering: What comes next?

The observatory has a packed schedule of science programs looking at all kinds of cosmic phenomena, like planets, stars, galaxies, black holes, and more. Webb will revolutionize our understanding of the universe — but first, researchers need time to analyze data and make sure that they understand what they’re seeing. Here are four things to know about Webb’s next steps:

More images are coming. Webb has already captured more images beyond the ones you saw on July 12, and the Cartwheel Galaxy is just one example. Hold onto your intergalactic hats — we’ll be rolling those out in the coming weeks at nasa.gov/webb and on the NASAWebb social media channels. Some of those images give a first look at Webb’s capabilities, but are not part of science programs. In the meantime, you can revisit the first images at nasa.gov/webbfirstimages. We also have this page where you can find the full array of images and data at full resolution.

News releases on results will be coming, too, once they have been reviewed. You may have seen scientists on social media posting their preliminary findings from Webb data. But before NASA publicizes results in news materials, we wait for the findings to be peer-reviewed — meaning, the science community has assessed the results. Science is a collaborative process of asking questions, testing out ideas, discussing with colleagues, and doing it all over. The peer-review process generally happens when researchers submit their findings to a journal or conference. It may take a little while, but it’s worth it.

There is other publicly available data you can check out. Anyone can take a deep dive into what Webb saw during the commissioning period, such as images of Jupiter and some of its moons. Check out the Barbara A. Mikulski Archive for Space Telescopes, which scientists call “MAST,” for what’s out there right now.

The current Webb observing schedule is set and available. If you want to find out what Webb is looking at this week, visit the Space Telescope Science Institute’s weekly schedule to find out which cosmic objects the observatory is checking out. The full buffet of Webb observations for the next year, known as Cycle 1, is available here.

Thanks for being part of this historic journey!

-Elizabeth Landau, NASA Headquarters

Senior Project Scientist John Mather Reflects on Journey to Webb’s First Images

People around the world joined together in excitement as the first color scientific images and spectra from NASA’s James Webb Space Telescope were revealed this week. Webb is fully commissioned and already embarked on its first year of peer-reviewed science programs. We asked Webb senior project scientist John Mather to reflect on reaching this moment after 25 years, taking Webb from an initial spark of an idea to the world’s premier space observatory.

Credit: NASA/Taylor Mickal

“It was worth the wait! Our immense golden telescope is seeing where none have seen before, discovering what we never knew before, and we are proud of what we have done. It’s our day to thank the people who made it possible, from the scientific visionaries in 1989 and 1995, to the 20,000 engineers, technicians, computer programmers, and scientists who did the work, and to the representatives of the people in the U.S., Europe, and Canada, who had faith in us and supported us. And special thanks to Senator Barbara Mikulski, who saved not one but two telescopes, with her inspiration and determination that setbacks are never the end. And special thanks to Goddard Project Manager Bill Ochs and Northrop Grumman Project Manager Scott Willoughby, who together pulled us all through every challenge to complete success.

“Already we have stood on the shoulders of giants like the Hubble and Spitzer space telescopes, and seen farther. We have seen distant galaxies, as they were when the universe was less than a billion years old, and we’re just beginning the search. We have seen galaxies colliding and merging, revealing their chemical secrets. We have seen one black hole close up, in the nucleus of a nearby galaxy, and measured the material escaping from it. We’ve seen the debris when a star exploded, liberating the chemical elements that will build the next generations of stars and planets. We have started a search for Earth 2.0, by watching a planet transiting in front of its star, and measuring the molecules in its atmosphere.

“What comes next? All the tools are working, better than we hoped and promised. Scientific observations, proposed years ago, are being made as we speak. We want to know: Where did we come from? What happened after the big bang to make galaxies and stars and black holes? We have predictions and guesses, but astronomy is an observational science, full of surprises. What are the dark matter and dark energy doing? How do stars and planets grow inside those beautiful clouds of gas and dust? Do the rocky planets we can observe with Webb have any atmosphere at all, and is there water there? Are there any planetary systems like our solar system? So far we have found exactly none. We’ll look at our own solar system with new infrared eyes, looking for chemical traces of our history, and tracking down mysteries like Jupiter’s Great Red Spot, composition of the ocean under the ice of Europa, and the atmosphere of Saturn’s giant moon Titan. We’ll be ready to study the next interstellar comet.

“With the precise launch on Christmas morning 2021, we look forward to 20 years of operation before we run out of propellant. Though we suffer the pings of tiny micrometeoroids, so tiny you couldn’t feel one if you had it in your fingers, we think the telescope can meet its original performance likely long beyond its five-year design life. In 2027 we will launch the Nancy Grace Roman Space Telescope, which will scan vast areas of the sky for new fascinating targets for Webb, while also hunting for the effects of dark matter and dark energy. We know the Webb images will rewrite our textbooks, and we hope for a new discovery, something so important that our view of the universe will be overturned once again.

Webb was worth the wait!”

– John Mather, Webb senior project scientist, NASA Goddard

NASA’s Webb Telescope Is Now Fully Ready for Science

The months-long process of preparing NASA’s James Webb Space Telescope for science is now complete. All of the seventeen ways or ‘modes’ to operate Webb’s scientific instruments have now been checked out, which means that Webb has completed its commissioning activities and is ready to begin full scientific operations.

Each of Webb’s four scientific instruments has multiple modes of operation, utilizing customized lenses, filters, prisms, and specialized machinery that needed to be individually tested, calibrated, and ultimately verified in their operational configuration in space before beginning to capture precise scientific observations of the universe. The last of all seventeen instrument modes to be commissioned was NIRCam’s coronagraph capability, which works to mostly block incoming starlight by inserting a mask in front of a target star, suppressing the target star’s relatively bright light to increase contrast and enable detection of fainter nearby companions such as exoplanets. NIRCam, or the Near-Infrared Camera, is equipped with five coronagraphic masks — three round masks and two bar-shaped masks — that suppress starlight under different conditions of contrast and separation between the star and its companions.

In addition to capturing detailed imagery of the universe, NIRCam is the observatory’s main wavefront sensor that is used to fine-tune the telescope’s optics. It has this double duty by design due to having a comparatively wide field of view and possessing a suite of special internal optics that enable it to take out-of-focus images of stars and even take ‘selfie’ images of the primary mirror itself. The team was able to start aligning the telescope’s optics even while the observatory was still cooling down, because of NIRCam’s ability to safely operate at higher-than-normal, but still cryogenic, operating temperatures.

“From the moment we first took images with NIRCam to start the telescope alignment process to the checkout of coronagraphy at the end of commissioning, NIRCam has performed flawlessly. Observers are going to be very pleased with the data they receive, and I am extremely happy with how 20 years of work by my team are now realized in amazing performance,” said Marcia Rieke, principal investigator for the NIRCam instrument and regents professor of astronomy, University of Arizona.

Webb’s commissioning process culminates tomorrow on July 12, with the release of the telescope’s first full-color images and spectroscopic data, and the official beginning of its science mission.

-Thaddeus Cesari, NASA’s Goddard Space Flight Center

Webb: The World Is About To Be New Again

As the Webb team wraps up the final tests for commissioning this week, we are now only days away from the public release of the first images and spectra on July 12! This also means that Webb is moving into the phase of full science operations that includes a highly impressive suite of science programs from the solar system to the distant universe. The entire Webb team is ready to celebrate the long journey to this point and embark on the next few decades of groundbreaking infrared astronomy.

Eric Smith, Webb program scientist at NASA Headquarters in Washington, has been with Webb since its beginnings in the mid-1990s. We asked him to share his thoughts as we finalize commissioning and prepare for the first images release next week:

“Even after working on the program for many years, I’m as excited as everyone else who is anticipating the release of the first beautiful full-color images and data from NASA’s James Webb Space Telescope – an audacious endeavor in partnership with the European and Canadian space agencies. From a professional perspective, I’m thrilled with the mission and the realization that astronomers around the world will receive an amazing new tool to explore space. Webb joins existing Great Observatories, like NASA’s Hubble Space Telescope and Chandra X-ray Observatory, giving scientists ‘eyes’ from Webb’s infrared vision through the visible, ultraviolet part of the spectrum to X-rays. A fantastic new era is upon us as these powerful facilities complement one another to investigate the cosmos.

“Yet, as stunning as these capabilities are, NASA is always looking to the future. Even today, we are constructing the next great observatory that will come after Webb, the Nancy Grace Roman Space Telescope. Unlike the existing facilities, Roman is designed to capture images of huge portions of the sky all at once, allowing scientists to look for very rare and even time-variable phenomena. This impressive survey capability will come online in the latter half of the decade. As if that is not amazing enough, we’ve begun to think about how we might build a telescope specifically designed to image and study nearby exoplanets in ways impossible today even with Webb. All the facilities we currently have, and those in the planning stage, arose from questions ignited by astronomers seeking to answer age-old questions about our universe using previous observatories. What questions might Webb observations raise now that will turn our curiosity to things unimagined? We will soon begin to know how Webb will transform our understanding of the universe.

“On a personal level, my family was recently blessed with the arrival of our first grandchild. Watching her awaken to her surroundings rejuvenates the world for me. Anyone who has been a parent, aunt, uncle, grandparent, or had the fortune to spend time with infants and toddlers may have experienced this joy in seeing the curiosity and interest of someone experiencing fresh and novel sights and sounds. With each blink and head turn, they learn more about the place they live, constantly developing and improving their own conceptions about what different and initially strange things are and how they relate to them. With each blink and head turn, their new perspective recalls for us distant memories when all was new and exciting in the world. These joyful moments of seeing things for the first time through the eyes of a child are experienced at the individual level and in small family gatherings. Rarer are the moments when we can collectively experience this rush of discovery and wonder. The James Webb Space Telescope will give us a fresh and powerful set of eyes to examine our universe.

Blink

The world is about to be new again.”

Part of the Webb team in front of a full-scale model at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in 2005. Credit: NASA

Eric Smith, Webb program scientist, NASA Headquarters