Webb’s Cool View on How Stars, Planets Form

The ongoing success of the multi-instrument optics alignment for NASA’s Webb telescope’s near-infrared instruments has moved the attention of the commissioning team to chill as we carefully monitor the cooling of the Mid-InfraRed Instrument (MIRI) down to its final operating temperature of less than 7 kelvins (-447 degrees Fahrenheit, or -266 degrees Celsius). We are continuing other activities during this slow cooldown which include monitoring the near-infrared instruments. As MIRI cools, other major components of the observatory, such as the backplane and mirrors, also continue to cool and are approaching their operational temperatures.

Last week, the Webb team did a station-keeping thruster burn to maintain Webb’s position in orbit around the second Lagrange point. This was the second burn since Webb’s arrival at its final orbit in January; these burns will continue periodically throughout the lifetime of the mission.

In the last few weeks, we have been sharing some of Webb’s anticipated science, beginning with the study of the first stars and galaxies in the early universe. Today, we will see how Webb will peer within our own Milky Way galaxy at places where stars and planets form. Klaus Pontoppidan, the Space Telescope Science Institute project scientist for Webb, shares the cool science planned for star and planet formation with Webb:

“In the first year of science operations, we expect Webb to write entirely new chapters in the history of our origins – the formation of stars and planets. It is the study of star and planet formation with Webb that allows us to connect observations of mature exoplanets to their birth environments, and our solar system to its own origins. Webb’s infrared capabilities are ideal for revealing how stars and planets form for three reasons: Infrared light is great at seeing through obscuring dust, it picks up the heat signatures of young stars and planets, and it reveals the presence of important chemical compounds, such as water and organic chemistry.

“Let us look at each reason in more detail. We often hear that infrared light passes through obscuring dust, revealing newborn stars and planets that are still embedded in their parental clouds. In fact, mid-infrared light, as seen by MIRI, can pass through 20 times thicker clouds than visible light. Because young stars are formed quickly (by cosmic standards, anyway) – in as little as a few 100,000 years – their natal clouds have not had time to disperse, hiding what is going on in this critical stage from visible view. Webb’s infrared sensitivity allows us to understand what happens at these very first stages, as gas and dust are actively collapsing to form new stars.

Hubble Space Telescope images in the optical (top) and near-infrared (bottom) of the Eagle Nebula’s Pillars of Creation. These images show how infrared light can peer through obscuring dust and gas and reveal star and planet formation within these giant galactic stellar nurseries. Credit: NASA, ESA/Hubble and the Hubble Heritage Team.

“The second reason has to do with the young stars and giant planets themselves. Both begin their lives as large, puffy structures that contract over time. While young stars tend to get hotter as they mature, and giant planets cool, both typically emit more light in the infrared than at visible wavelengths. That means that Webb is great at detecting new young stars and planets and can help us understand the physics of their earliest evolution. Previous infrared observatories, like the Spitzer Space Telescope, used similar techniques for the nearest star-forming clusters, but Webb will discover new young stars across the galaxy, the Magellanic Clouds, and beyond.

“Finally, the infrared range (sometimes called the “molecular fingerprint region”) is ideal for identifying the presence of a range of chemicals, in particular water and various organics. All four of Webb’s science instruments can detect various important molecules using their spectroscopic modes. They are particularly sensitive to molecular ices present in cold molecular clouds before stars are formed, and NIRCam and NIRSpec will, for the first time, comprehensively map the spatial distribution of ices to help us understand their chemistry. MIRI will also observe warm molecular gas near many young stars where rocky, potentially habitable planets may be forming. These observations will be sensitive to most bulk molecules and will allow us to develop a chemical census at the earliest stages of planet formation. It is no surprise that a significant number of Webb’s early scientific investigations aim to measure how planetary systems build the molecules that may be important for the emergence of life as we know it.

“We will be keeping a close eye on MIRI as it cools down. As the only mid-infrared instrument on Webb, MIRI will be particularly important for understanding the origins of stars and planets.”

Simulated MIRI spectrum of a protoplanetary disk, as it might appear in a number of Cycle 1 science programs. The spectrum shows many features that demonstrate the presence of water, methane, and many other chemicals. Credit: NASA, STScI.

–Klaus Pontoppidan, Webb project scientist, Space Telescope Science Institute


By Jonathan Gardner, Webb deputy senior project scientist, NASA’s Goddard Space Flight Center

And Stefanie Milam, Webb deputy project scientist for planetary science, NASA Goddard

Webb’s Mid-Infrared Instrument Cooldown Continues

“The Mid-Infrared Instrument (MIRI) and other Webb instruments have been cooling by radiating their thermal energy into the dark of space for the bulk of the last three months. The near-infrared instruments will operate at about 34 to 39 kelvins, cooling passively. But MIRI’s detectors will need to get a lot colder still, to be able to detect longer wavelength photons. This is where the MIRI cryocooler comes in.

By necessity, MIRI’s detectors are built using a special formulation of Arsenic-doped Silicon (Si:As), which need to be at a temperature of less than 7 kelvins to operate properly. This temperature is not possible by passive means alone, so Webb carries a “cryocooler” that is dedicated to cooling MIRI’s detectors. Credit: NASA/JPL-Caltech.

“Over the last couple weeks, the cryocooler has been circulating cold helium gas past the MIRI optical bench, which will help cool it to about 15 kelvins. Soon, the cryocooler is about to experience the most challenging days of its mission. By operating cryogenic valves, the cryocooler will redirect the circulating helium gas and force it through a flow restriction. As the gas expands when exiting the restriction, it becomes colder, and can then bring the MIRI detectors to their cool operating temperature of below 7 kelvins. But first, the cryocooler must make it through the ‘pinch point’ – the transition through a range of temperatures near 15 kelvins, when the cryocooler’s ability to remove heat is at its lowest. Several time-critical valve and compressor operations will be performed in rapid succession, adjusted as indicated by MIRI cryocooler temperature and flow rate measurements. What is particularly challenging is that after the flow redirection, the cooling ability gets better as the temperature gets lower. On the flip side, if the cooling is not immediately achieved due to, for example, larger than modeled heat loads, MIRI will start warming.

“Once the cryocooler overcomes the remaining heat loads, it will settle into its lower-power steady science operation state for the rest of the mission. This pinch point event has been extensively practiced in the cryocooler testbed at NASA’s Jet Propulsion Laboratory (JPL), which manages the MIRI cryocooler, as well as during Webb testing at the agency’s Goddard Space Flight Center and Johnson Space Center. Performing it on orbit will be supported by the operations team comprised of personnel from JPL, Goddard, and the Space Telescope Science Institute. The MIRI cryocooler was developed by Northrop Grumman Space Systems. MIRI was developed as a 50/50 partnership between NASA and ESA (European Space Agency), with JPL leading the U.S. efforts and a multi-national consortium of European astronomical institutes contributing for ESA.”

– Konstantin Penanen and Bret Naylor, cryocooler specialists, NASA JPL

“MIRI stands out from Webb’s other instruments because it operates at much longer infrared wavelengths, compared to the other instruments that all begin with an ‘N’ for ‘near-infrared.’ MIRI will support the instrument suite to explore the infrared universe with depth and detail that are far beyond anything that has been available to astronomers to date.

“The imager promises to reveal astronomical targets ranging from nearby nebulae to distant interacting galaxies with a clarity and sensitivity far beyond what we’ve seen before. Our grasp on these glittering scientific treasures relies on MIRI being cooled to a temperature below the rest of the observatory, using its own dedicated refrigerator. Exoplanets at temperatures similar to Earth will shine most brightly in mid-infrared light. MIRI is therefore equipped with four coronagraphs, which have been carefully designed to detect such planets against the bright glare of their parent stars. The detailed colors of exo-giant planets (similar to our own Jupiter) can then be measured by MIRI’s two spectrometers to reveal chemical identities, abundances, and temperatures of the gases of their atmospheres (including water, ozone, methane, ammonia, and many more).

MIRI is inspected in the giant clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in 2012. Credit: NASA/Chris Gunn.

“Why so cold? MIRI’s state-of-the-art light sensitive detectors that are tuned to work in the mid-infrared are blind unless they are cooled below 7 kelvins (-266 degrees Celsius, or -447 degrees Fahrenheit). For contrast, a standard domestic freezer cools its contents to about 255 kelvins (-18 degrees Celsius, or -0.7 degrees Fahrenheit). At higher temperatures, any signal that may be detected from the sky is lost beneath the signal from its own internally generated ‘dark current.’ Even if the detectors are cooled, Webb images would still be swamped by the glow of thermal infrared light emitted by MIRI’s own mirrors and aluminum structure if they are to get warmer than 15 kelvins (-258 degrees Celsius, or -433 degrees Fahrenheit). The engineering solution was to stand MIRI off from the instrument mounting structure behind Webb’s primary mirror like a high-tech metal spider on six carbon fibre legs. These insulate MIRI from the much hotter telescope (where 45 kelvins, or -228 degrees Celsius/-379 degrees Fahrenheit, qualifies as hotter). The instrument’s body is also swathed in a shiny aluminum-coated thermal blanket, which reflects the radiant heat of its surroundings.

“Getting this instrument cold is one of the last major challenges faced by Webb before the MIRI team can truly relax, and passing through the cooler’s ‘pinch point’ will be the most daunting step in this challenge. At that time, the cooler will have pulled out almost all of the heat left in MIRI’s 100 kilograms (220 pounds) of metal and glass from that tropical launch day morning, three months ago. MIRI will be the last of Webb’s four instruments to open its eyes on the universe.”

– Alistair Glasse, Webb-MIRI Instrument Scientist, UK Astronomy Technology Centre
and Macarena Garcia Marin, MIRI Instrument and Calibration Scientist, ESA

Webb Completes First Multi-Instrument Alignment

The sixth stage of aligning NASA’s James Webb Space Telescope’s mirrors to its scientific instruments so they will create the most accurate and focused images possible has concluded. While the Mid-Infrared Instrument (MIRI) continues its cooldown, optics teams have successfully aligned the rest of the observatory’s onboard instruments to Webb’s mirrors. Previous alignment efforts were so accurate that the team concluded no additional adjustments to the secondary mirror are necessary until the seventh and final stage, which will involve MIRI when it has fully cooled.

“As a general rule, the commissioning process starts with coarse corrections and then moves into fine corrections. The early secondary mirror coarse corrections, however, were so successful that the fine corrections in the first iteration of Phase Six were unnecessary,” said Chanda Walker, Webb wavefront sensing and control scientist, Ball Aerospace. “This accomplishment was due to many years of planning and great teamwork among the wavefront sensing team.”

Throughout the majority of the alignment process, Webb’s 18 hexagonal mirrors and secondary mirror were focused into alignment to the Near-Infrared Camera (NIRCam) instrument only. Upon completing this most recent step, the observatory is now aligned to the Fine Guidance Sensor (FGS), the Near-Infrared Slitless Spectrograph (NIRISS), and the Near-Infrared Spectrometer (NIRSpec) as well as NIRCam.

Once MIRI fully cools to its cryogenic operating temperature in the weeks ahead, a second multi-instrument alignment will occur to make final adjustments to the instruments and mirrors if needed. When the telescope is fully aligned and able to deliver focused light to each instrument, a key decision meeting will occur to confirm the end of aligning the James Webb Space Telescope. The team will then transition from alignment efforts to commissioning each instrument for scientific operations, which are expected to begin this summer.

Webb Continues Multi-Instrument Alignment

While telescope alignment continues, Webb’s Mid-Infrared Instrument (MIRI) is still in cooldown mode. MIRI, which will be the coldest of Webb’s four instruments, is the only instrument that will be actively cooled by a cryogenic refrigerator, or cryocooler. This cryocooler uses helium gas to carry heat from MIRI’s optics and detectors out to the warm side of the sunshield. To manage the cooldown process, MIRI also has heaters onboard, to protect its sensitive components from the risk of ice forming. The Webb team has begun progressively adjusting both the cryocooler and these heaters, to ensure a slow, controlled, stable cooldown for the instrument. Soon, the team will turn off MIRI’s heaters entirely, to bring the instrument down to its operating temperature of less than 7 kelvins (-447 degrees Fahrenheit, or -266 degrees Celsius).

In the meantime, after achieving alignment with the Near-Infrared Camera (NIRCam), Webb engineers have begun aligning the telescope to the remaining near-infrared instruments. For more about this six-week process, we hear today from Michael McElwain and Charles Bowers, members of the Webb team at NASA’s Goddard Space Flight Center:

“Webb’s alignment at the NIRCam field showed some spectacular diffraction-limited images, producing a tantalizing glimpse of the capabilities this observatory will carry for its science program. This was a major milestone because it required nearly all of the observatory systems to be functioning as designed. It all worked as well as we dared to hope, and it was certainly a moment to celebrate.

“The next step is to ensure the telescope is well-aligned to the instruments other than NIRCam, including the guider (the Fine Guidance Sensor, or FGS) and the other three science instruments: the Near-Infrared Slitless Spectrograph (NIRISS), Near-Infrared Spectrometer (NIRSpec), and MIRI. All the near-infrared instruments have already been passively cooled, are approaching their operational temperatures, and are participating in this next alignment stage. MIRI requires active cooling by a cryocooler, which is now underway, and it will be ready for alignment in a few weeks.

“This is the sixth stage of our telescope alignment plan, the Telescope Alignment Over Instrument Fields of View. Each of the instruments occupies a part of the telescope focal plane, just slightly offset with respect to each other. NIRCam was intentionally placed at the center of the telescope field where the telescope’s optical performance is best due to its demanding imaging performance requirements. Additionally, NIRCam was equipped with some specialized optical tools used to align the telescope. However, the initial alignment using only NIRCam could lead to an incorrect placement that compensates errors from primary-to-secondary mirror misalignments with the primary mirror itself. Small misalignments of this type will be evident in images in instruments farther from the center of the telescope field of view.

“The first step was to simply look at star fields as seen by NIRCam, NIRISS, FGS, and NIRSpec to see whether they were in focus. The stars looked nearly in-focus, which was a sign that the primary to secondary mirror alignment was already very good. A more accurate optical error measurement has been carried out at five to 10 field positions within each operational science instrument, using data taken with the secondary mirror positioned out of focus. This dataset provided a conclusive determination of the telescope alignment state.

“The Webb optics team analyzed the multi-instrument dataset and determined that only minor focus adjustments are needed on the secondary mirror and science instruments. Since the telescope is still cooling along with the MIRI instrument, we will not apply the corrections at this time and will defer them until the next round.

“When MIRI is available, an additional round of measurements will be conducted by each science instrument to determine the final state of the telescope alignment. We will iterate this process as needed to ensure the telescope performance is optimized for all of the instruments. After the telescope alignment to all instruments is complete, we will transition to the final two months of commissioning, where we will carry out optical stability tests and measure the science instrument performance before embarking on the Cycle 1 science program.”

Michael McElwain, Webb observatory project scientist, NASA Goddard

Charles Bowers, Webb deputy observatory project scientist, NASA Goddard