Gavin Schmidt Named EarthSky Communicator of the Year

EarthSky has named Gavin Schmidt, a climate modeler based at NASA’s Goddard Institute for Space Studies its science communicator of the year. The first question of an eight minute EarthSky podcast Q & A with Schmidt is below. Listen to the rest of the interview here and see more of Gavin’s appearances in the media here

Give us a sense of what’s really happening with climate change on our planet right now.
I think you want to side-step that question and talk about whatpeople are doing to study this problem. Who are these people who aregoing out and measuring ocean temperatures? Who are these people who aretracking the year-on-year retreat of the Arctic sea ice? Who are thesepeople who are going out and measuring the small processes involved incloud formation, in soil moisture retention, in ocean eddies, inevaporation? It’s these things that we then put together to build thenumerical simulations that I work on, these climate models, that we’reusing to help us piece together what’s happened in the past, what’shappening now, and what’s likely to happen in the future. I think it’s far more important that people get a sense of thescience as a work in progress, rather than one particular message orpiece of content knowledge getting hammered home.

See How a Stronger Arctic Oscillation Has Shifted the Flow of Russian Runoff

An interesting new study published in Nature points out that an increase in the strength of the Arctic Oscillation between 2005 and 2008 caused winds in the region to grow more cyclonic and shift ocean currents in ways that drew more upper-surface freshwater from Russian rivers toward the Canada Basin and the Beaufort Sea. To see the shift in the animation above, look for the tightening of the wind patterns (shown in blue) over the Canada Basin that begins about 13 seconds into the video. Notice how the stream of less salty water from river runoff in Russia (shown in red) begins to loop westward toward Canada in sync with the circulation of the wind rather than continuing toward Greenland as it typically would. The purple arrows show the transpolar drift, a current that generally pushes water toward Greenland. NASA’s Jet Propulsion Laboratory has a press release with more details, and a number of news outlets have written stories about the study. In the image below, the altered path of the freshwater current is shown in red.

Air Pollution Helps Fuel Hailstorms, Tornadoes

I’ve written previously
about research conducted by Thomas Bell, a scientist based at NASA’s Goddard Space Flight Center, that shows lightning storms tend to occur during the middle of the week when air pollution levels are the highest. An update: Bell has recently published more research showing the effect extends to hail storms and tornadoes as well. Here’s how Bell summarizes his latest work in a short write-up posted on a page from Goddard’s atmospheric science branch. For a more detailed explanation of how air pollution can fuel hail and tornadoes, you can read the full scientific paper (pdf) published by the Journal of Geophysical Research.

Hailstorm and tornado activity increases in the middle of the work week (Tuesday-Thursday) compared to weekends. Weekly cycles in weather behavior are a clear sign of human influence on our climate. The weekly cycle is believed to be caused by the well-known weekly changes in pollution levels with the day of the week. Aerosol pollution decreases the size of water droplets coalescing in clouds. They are lighter and don’t fall out as rain, but instead rise to much higher altitudes where they freeze and release additional heat. This invigorates the storm and produces more ice aloft. This might explain the increase in hailstorms as well as the increase in lightning that has also been observed. It is conjectured by Rosenfeld and Bell, based on numerical model simulations, that storms, amped up by pollution, nevertheless produce weaker cold pools at their base. Tornadoes develop less easily when a cold, rapidly moving pool forms beneath the storm. By weakening cold pool formation, pollution may lead to storms with better chances of forming a tornado than is the case for storms formed in clean air.

Text by Adam Voiland. Video showing lightning storms from the perspective of the International Space Station was posted originally on Johnson Space Center’s Crew Earth Observations Office website. Graphic comparing pollution levels, hail, and tornadoes from Bell’s 2011 JGR paper.